- 1. Let B(t) be a Brownian motion. For fixed t and s, find the distribution function of the random variable X = B(t) + B(s).
- 2. Let B(t) be a Brownian motion. Find constants a and b such that $X(t) = \int_0^t (a + b\frac{u}{t}) dB(u)$ is also a Brownian motion.
- 3. Let B(t) be a Brownian motion. Find the distribution of $\int_0^t e^{t-s} dB(s)$. Check whether $X_t = \int_0^t e^{t-s} dB(s)$ is a martingale.
- 4. Let B(t) be a Brownian motion. Find the distribution of $\int_0^t B(s) ds$. Check whether $Y_t = \int_0^t B(s) ds$ is a martingale.
- 5. Let $X = \int_0^1 B(t) dB(t)$. Find the distribution function of the random variable X.
- 6. Let $X = \int_{a}^{b} |B(t)| dB(t)$. Find the variance of the random variable X.
- 7. The signum function is defined by $\operatorname{sgn}(0) = 0$ and $\operatorname{sgn}(x) = x/|x|$ if $x \neq 0$. Let $X_t = \int_0^t \operatorname{sgn}(B(s)) dB(s)$. Show that for s < t, the random variable $X_t X_s$ has mean 0 and variance t s.
- 8. Find the variance of the random variable $X = \int_a^b \sqrt{t} e^{B(t)} dB(t)$.
- 9. Show that $X_t = e^{B(t) \frac{1}{2}t}$ is a martingale.
- 10. Let B(t) be a Brownian motion. Find all deterministic functions $\rho(t)$ so that $e^{B(t)+\rho(t)}$ is a martingale.
- 11. Let $B_1(t)$ and $B_2(t)$ be two independent Brownian motions and let $\Delta_n = \{t_0, t_1, \dots, t_{n-1}, t_n\}$ be a partition of a finite interval [a, b]. Show that

$$\sum_{i=1}^{n} (B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1})) \longrightarrow 0$$

in $L^2(\Omega)$ as $\|\Delta_n\| = \max_{1 \le i \le n} (t_i - t_{i-1})$ tends to 0.

- 12. Evaluate the stochastic integral $\int_0^t \arctan B(s) \, dB(s)$.
- 13. Check whether $X(t) = \int_0^t \operatorname{sgn}(B(s) s) \, dB(s)$ is a Brownian motion.
- 14. Let B(t) be a Brownian motion with respect to a probability measure P. Find a probability measure with respect to which the stochastic process $W(t) = B(t) + t - t^3$, $0 \le t \le 2$, is a Brownian motion.
- 15. Let B(t) be a Brownian motion with respect to a probability measure P. Find a probability measure with respect to which the stochastic process $W(t) = B(t) + \int_0^t \min\{1, B(s)\} ds, 0 \le t \le 3$, is a Brownian motion.