
CHAPTER 4

PARTITIONS OF UNITY

AND SMOOTH FUNCTIONS

In this section, we construct a technical device for extending some local constructions
to global constructions. It is called a partition of unity. We also use the opportunity to
discuss C∞ functions. We begin with examples of C∞ functions on R and Rn. Some of
these are required for the construction of partitions of unity. At the end of the chapter, we
return to C∞ funcitons and apply our new techniques. The first examples we construct,
Examples 4.1abc***, are standard and we follow Warner.

Example 4.1a***. A function on R which is C∞ but not analytic. Let

f(t) =







1

e1/t
if t > 0

0 if t ≤ 0.

We show that for each n = 0, 1, 2, 3, · · · there is a polynomial pn such that

f (n)(t) =







pn(1/t)
1

e1/t
if t > 0

0 if t ≤ 0.

We use mathematical induction to show the claim. The claim is true for n = 0 as f (0) = f .
Here p0(x) = 1. For k > 0 we separately handle t > 0, t < 0 and t = 0. If f (k)(t) =
pk(1/t) 1

e1/t for t ∈ (0,∞), then

f (k+1)(t) = p′k(1/t)(−
1

t2
)

1

e1/t
+ pk(1/t)(

1

t2
)

1

e1/t

and pk+1(x) = −x2p′k(x) + x2pk(x). For t ∈ (−∞, 0), f is zero and so are its derivatives
of all orders. At t = 0 we use the definition of the derivative.

lim
h→0+

f (k)(h) − f (k)(0)

h
= lim

h→0+

pk(1/h) 1
e1/h

h

= lim
x→∞

xpk(x)

ex

= 0.

The substitution was x = 1/h, and the last limit was a polynomial divided by an exponen-

tial: a standard L’Hopitals Theorem example from Calculus. The limit, limh→0−

f(k)(h)−f (k)(0)
h

is zero as the numerator is identically zero.
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Example 4.1b***. Let

g(t) =
f(t)

f(t) + f(1 − t)
=



















0 if t ≤ 0

1

1 + e1/t

e1/(1−t)

if 0 < t < 1

1 if t ≥ 1.

Then g is C∞ on R and g is strictly increasing on [0, 1].

The function g is C∞ since it is a quotient of C∞ functions and the denominator is

never 0. If t ≤ 0, then f(t) = 0 so g(t) = 0. If t ≥ 1, then f(1 − t) = 0 so g(t) = f(t)
f(t) = 1.

Recall that f ′(t) = 1
t2
f(t) for t > 0, and so, d f(t)

dt
= −f ′(1 − t). Now, for t ∈ (0, 1),

g′(t) =
f ′(t)(f(t) + f(1 − t)) − f(t)(f ′(t) − f ′(1 − t))

(f(t) + f(1 − t))2

=
f ′(t)f(1 − t) + f(t)f ′(1 − t)

(f(t) + f(1 − t))2

=
f(t)f(1 − t)

(f(t) + f(1 − t))2

(

1

t2
+

1

(1 − t)2

)

This expression is positive on (0, 1). Hence g is strictly increasing on [0, 1]. The graph of
g is as follows.

Example 4.1c***. The bump function on (−2, 2). Let

h(t) = g(t+ 2)g(2 − t) =































0 if t ≤ −2

g(t+ 2) if −2 < t < −1

1 if −1 ≤ t ≤ 1

g(2 − t) if 1 < t < 2

0 if 2 ≤ t

The function h is C∞ on all of R, h(x) = 0 if x ∈ (−∞,−2] ∪ [2,∞), h(x) = 1 if

x ∈ [−1, 1], h is strictly increasing on [−2,−1], and strictly decreasing on [1, 2].

Its graph is shown below.
Let C(r) denote the open cube in Rn which is {(x1, · · · , xn)|xi ∈ (−r, r) for i = 1, 2, 3, · · · , n}

and let ¯C(r) be its closure.

Example 4.2***. The bump function on C(2) ⊂ Rn. Let

b(x1, · · · , xn) = Πn
i=1b(xi).

Then b(x1, · · · , xn) = 0 on the complement of C(2), b(x1, · · · , xn) = 1 for (x1, · · · , xn) in

the closure of C(1), and 0 < b(x1, · · · , xn) < 1 otherwise.
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Definition 4.3***. If U = {Uα|α ∈ A} is an open cover of a manifold M , then a subset

of U which is also a cover is called a subcover.

Definition 4.4***. If U = {Uα|α ∈ A} is an open cover of a manifold M , then the open

cover V = {Vγ |γ ∈ Γ} is a refinement if for all γ ∈ Γ there is an α ∈ A such that Vγ ⊂ Uα.

Definition 4.5***. A collection of subsets U = {Uα|α ∈ A} of a manifold M is called

locally finite, if for all m ∈ M there is an neighborhood O of m with Uα ∩ O 6= ∅ for only

a finite subset of A.

Definition 4.6***. A partition of unity on a manifold M is a collection of smooth func-

tions {φi : M → R | i ∈ I} such that

(1) { the support of φi | i ∈ I} is locally finite

(2) φi(p) ≥ 0 for all p ∈ M , i ∈ I, and,

(3)
∑

i∈I φi(p) = 1 for all p ∈M .

Note that the sum is finite for each p.

Definition 4.7***. The partition of unity on a manifold M {φi | i ∈ I} is subordinate

to the open cover U = {Uα|α ∈ A} if for all i ∈ I there is an α ∈ A such that the support

of φi is in Uα.

Lemma 4.8***. Suppose M is a connected manifold. Then there is a sequence of open

sets Oi such that

(1) Ōi is compact

(2) Ōi ⊂ Oi+1

(3)

∞
⋃

i=1

Oi = M

Proof. Take a countable basis for the topology ofM (asM is second countable) and for each
x ∈M pick a compact setKx that contains x in its interior (asM is locally compact). Since
M is Hausdorff, we obtain another basis for the topology of M by keeping only those basis
elements which are in some Kx. We now have a countable basis U = {Ui|i = 1, 2, 3, · · · }
such that if Ui ∈ U then Ūi is compact.

Let O1 = U1. Each of the other open sets will have the form Ok =
⋃jk

i=1 Ui. Suppose we
have constructed Ok. We show how to construct Ok+1. Since Ōk is compact let jk+1 be

the smallest counting number with Ōk ⊂
⋃jk+1

i=1 Ui. We establish the required properties.

Since Ōk =
⋃jk

i=1 Ūi is a finite union of compact spaces, it is compact. By construction,
Ōk ⊂ Ok+1. If Ōk ⊂ Ok then Ok = M as Ok is open and closed, otherwise jk+1 > jk.

Therefore
⋃k

i=1 Ui ⊂ Ok so

∞
⋃

i=1

Oi = M , and (3) follows. �

Proposition 4.9***. Suppose U = {Uα|α ∈ A} is a basis for the manifold M with Ūα

compact for all α ∈ A. Suppose W = {Wβ|β ∈ B} is any open cover. Then there is a

countable locally finite refinement of W, V = {Vi|i ∈ I}, with Vi ∈ U for all i ∈ I.

Proof. If the manifold has more than one component then we separately handle each
component, hence we assume that M is connected. By the previous lemma, there is a
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collection of open sets {Oi|i = 1, 2, 3, · · · } which satisfy the conditions of the lemma.
Now Ōi+1 \ Oi is compact and contained in the open set Oi+2 \ Ōi−1. Note that O =
{Oi+2 \ Ōi−1, O4 | i = 3, 4, · · · } is an open cover of M .

We construct V by reducing U in two steps. Let U ′ be the set of all Uα ∈ U such that
there is a β with Uα ⊂ Wβ and that Uα ⊂ Oi+2 \ Ōi−1 or O4. The set U ′ is a basis since
O and W are open covers and M is Hausdorff, i.e., for each x ∈ M , U ′ contains a nbhd
basis. Take a finite subset of U ′ each of which is in O4 and covers Ō3, a compact set. For
each i > 2 take finite subsets of U ′ each of which is in Oi+2 \ Ōi−1 and covers Ōi+1 \Oi, a
compact set. The union of these various finite collections V = {Vj |j ∈ I} is locally finite
since an open set in the ith collection can only meet open sets from the (i− 2)nd collection
up through the (i+ 2)nd. These are each finite collections. The set V is a countable union
of finite sets and so countable. The cover V is subordinate to W since U ′ is subordinate
to W. �

Lemma 4.10***. Suppose M is a manifold. Then there is a basis {Uα|α ∈ A} such that

(1) Ūα is compact and

(2) For each α ∈ A there is a smooth function ϕα : M → R such that ϕα(x) = 0 if

x /∈ Uα and ϕα(x) > 0 if x ∈ Uα.

Notice that the function guaranteed in the lemma cannot be analytic but must be C∞.
For example on R the support of ϕα is compact and so the function is zero on (m,∞) for

some m. Hence if x > m, then ϕ
(n)
α (x) = 0, for n = 1, 2, 3, · · · .

Proof. First note that R(m) = {φ−1(C(2))|(U, φ)is a chart centered at m and C(3) ⊂
φ(U)} is a neighborhood basis at m. If fact, if (U, φ) is any chart centered at m the
charts (U, kφ) for k large suffice. Now, we produce the function. If R ∈ R(m), then there
is a C∞ function ϕR : M → R with ϕR(x) = 0 if x /∈ R and ϕR(x) > 0 if x ∈ R. If (U, φ)
is a chart with C(3) ⊂ φ(U) and R = φ−1(C(2)) ∈ R(m), then take

ϕR(x) =

{

b ◦ φ(x) if x ∈ U

0 if x /∈ R̄

Here b is the C∞ function we produced on Rn with b(x) > 0 for x ∈ C(2) and b(x) = 0
for x /∈ C(2). The function ϕR is smooth since b ◦ φ and 0 agree on the overlap of their
domains, U \ R̄ an open set. �

Theorem 4.12***. If M is a manifold and W is any open cover, then M admits a

countable partition of unity subordinate to the cover W with the support of each function

compact.

Proof. Apply Proposition 4.9*** to the basis constructed in Lemma 4.10***. We obtain
a locally finite collection {Ui|i = 1, 2, 3, · · · } with ϕi : M → R as in the lemma. Let

ϕ(x) =

∞
∑

i=0

ϕi(x). Recall that for each x there is an open set O with x ∈ O and ϕi = 0 on

O for all but finitely many i. The sum is finite for each x. It is the fact that locally finite
requires an open set about each x that meets only a finite number of Ui (say i = 1, · · · ,m)
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that gives the C∞ differentiablity, since on the open set O the function ϕ is a finite sum
of smooth functions: the composition of

M
(ϕ1,··· ,ϕm)
−−−−−−−→ Rm Σ

−→ R.

If only each x were in a finite number of Ui, then we could only guarantee well-defined

but not smooth. Let ψi =
ϕi

ϕ
. Then {ψi|i = 1, 2, 3, · · · } form a partition of unity with the

support of ψi being Ui. �

It is interesting to note that there is no special field to study the zeros of C∞ functions.
Algebraic geometry studies the sets which are zeros of polynomials, and the nature of the
zeros of analytic functions is also studied, but the sets which are zeros of smooth functions
does not give a new area of study. The reason is:

Theorem 4.13***. If X ⊂M is closed, then there is a smooth function f : M → R with

f(x) = 0 if and only if x ∈ X.

Proof. Let N = M \ X. N is an open subset of M and so a manifold. Let {Uα|α ∈ A}
be the basis of M produced in the lemma. Let U = {Uα|α ∈ A and Uα ⊂ N}. The
collection U is a basis for N with each Ūα compact for Uα ∈ U . We apply Proposition
4.9*** to the manifold N with W = {N} to get a countable locally finite subcollection of
U , {Ui|i = 1, 2, 3, · · · }. Each Ui is equipped with φi : M → R whose support is exactly

Ui, as in Lemma 4.10***. Let f =

∞
∑

i=1

φi. The function f is C∞ and is nonzero exacty on

∪∞

i=1Ui = N �

Theorem 4.13*** demonstrates a dramatic array of possible behavior of C∞ functions
compared to analytic functions. To observe the restricted nature of the zeros of analytic
fuctions, we consider functions on the real line.

Theorem 4.14***. Suppose f : R → R and X = {x | f(x) = 0}.

(1) If f is a polynomial, then X is a finite set.

(2) If f is an analytic function, then X is a discrete set.

(3) If f is a C∞ function, then X can be an arbitrary closed set.

Proof. An n-th degree polynomial has at most n zeros, which shows the first item. The
third item follows from Theorem 4.13***.

To show the second item we suppose that the zeros of f are not discrete and show that
implies f is identically zero. Suppose that pm ∈ X for m = 1, 2, 3, · · · and lim

m→∞

pm = p.

Now,

f(x) =
∞
∑

n=0

1

n!
f (n)(p)(x− p)n.

In order to show f is the zero function, it is enough to show that f (n)(p) = 0 for all whole
numbers n.

We show that f (n)(p) = 0 for all whole numbers n by mathematical induction. We
first observe it is true for n = 0, f (0) = f . By continuity, lim

m→∞

f(pm) = f(p) and each
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f(pm) = 0, and therefore, f(p) = 0. We now assume that f (k)(p) = 0 for k < n and show
this implies f (n)(p) = 0. First note that

lim
m→∞

n!
f(pm)

(pm − p)n
= lim

m→∞

n!
0

(p− pm)n
= 0.

Now compute the same limit using L’Hospital’s rule,

0 = lim
m→∞

n!
f(pm)

(pm − p)n
= lim

x→p
n!

f(x)

((x− p)n

= lim
x→p

n!
f ′(x)

n(x− p)(n− 1)

...

= lim
x→p

n!
f (n−1)(x)

n!(x− p)
.

By the induction hypothesis, these limits are all of the indeterminate form 0
0
. One last

application of L’ Hopitals rule yields,

lim
m→∞

n!
f(pm)

(pm − p)n
= lim

x→p
n!
fn(x)

n!
= f (n)(p)

the last equality by continuity of the n-th dervative. Therefore f (n)(p) = 0 for all whole
numbers n, and f is identically zero. �

Exercises

Exercise 1***. Show that the bump function b on Rn has the following property: if

b(x) = 0, then all of the derivatives of b at x are also zero. Show that if X ⊂ Rn is a

closed set, then there is a function f : Rn → R such that f(x) = 0 if and only if x ∈ X
and all partials of f vanish on X.

Exercise 2***. Assume the following version of the Stone-Weirerstrass Theorem: If K ⊂
Rn is compact and f : K → R is continuous, then given any ε > 0 there is a polynomial

function g such that | g|K (x) − f(x)| < ε for all x ∈ K.

Prove that is M is a smooth manifold and f : M → R is continuous, then given any

ε > 0 there is a C∞ function g : M → Rn such that |f(x) − g(x)| < ε for all x ∈M .


