CHAPTER 5
TANGENT VECTORS

In R™ tangent vectors can be viewed from two perspectives

(1) they capture the infinitesimal movement along a path, the direction, and
(2) they operate on functions by directional derivatives.

The first viewpoint is more familiar as a conceptual viewpoint from Calculus. If a point
moves so that its position at time ¢ is p(t), then its velocity vector at p(0) is p’(0), a tangent
vector. Because of the conceptual familiarity, we will begin with the first viewpoint,
although there are technical difficulties to overcome. The second interpretation will be
derived as a theorem. The second viewpoint is easier to generalize to a manifold. For
instance, operators already form a vector space. It is the second viewpoint that ultimately
plays the more important role.

Suppose M is an n-manifold. If m € M, then we define a tangent vector at m as
an equivalence class of paths through m. Equivalent paths will have the same derivative
vector at m and so represent a tangent vector. The set of all tangent vectors at m forms the
tangent space. The description and notation of tangent vectors in R"™ from the advanced
Calculus setting and in the present setting is discussed in Remark 5.9%**,

Definition 5.1***. Suppose M is a manifold. A path is a smooth map p: (—€,€) — M,
where € > 0.

As was mentioned, if M = R", then p(0) is the velocity vector at p(0). We also recall,
from advanced Calculus, the relationship between the derivative map and the directional
derivative,

(1) Dp(0)(1) = D1p(0) = p'(0)

Definition 5.2***, Suppose M is a manifold and m € M A tangent vector at m is an
equivalence class of paths a with a(0) = m. Let (U, ¢) be a coordinate chart centered at
d¢ o at) d¢ o B(t)

dt T dt

m, two paths o and 3 are equivalent if p

t=0 t=0

Denote the equivalence class of a path « by [a]. We can picture [« as the velocity vector
at «(0).

We next observe that the equivalence class doesn’t depend on the specific choice of
a coordinate chart. If (W),1) is another coordinate neighborhood centered at m, then

Yoa=1o0¢ lopoa,and, we use formula (1),

di) o a(t)

dt = D(1h o ¢~ ") (¢(m)) o D(¢ 0 a)(0)(1).

t=0

copyright (©2002

Typeset by ApS-TEX
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The diffeomorphisms 1 o ¢~ and ¢ o a are maps between neighborhoods in real vector
spaces, SO

if and only if d@b:lita(t)

dyp o (t)

dt

dg o a(t)
dt

d¢ o 5(t)

dt

t=0 t=0 t=0 t=0
Therefore the notion of tangent vector is independent of the coordinate neighborhood. If
p:(—€€) — M is a path in M with p(0) = m, then [p] is a tangent vector to M at m and
is represented by the path p. Consistent with the notation for R™, we can denote [p] by
#(0).

Let T'M,,, denote the set of tangent vectors to M at m. Other common notations are
M,, and T,, M.

Theorem 5.3***, Suppose M, N, and R are manifolds.

(1) If ¢ : M — N is a smooth map between manifolds and m € M then there is an
induced map Qum : T My, — T'Ny(pm)-

(2) Ify : N — R is another smooth map between manifolds then (10 ¢).m = Vyg(m) ©
¢sm - This formula is called the chain rule.

(3) If ¢ : M — M is the identity then ¢, : TM,, — TDM,, is the identity. If
¢: M — N is a diffeomorphism and m € M then ¢.,, is 1-1 and onto.

(4) TM,, is a vector space of dimension n, the dimension of M, and the induced maps
are linear.

The induced map ¢, is defined by
Pem([a]) = [¢ 0 a].

Notice that if M = R", N = R", then we have a natural way to identify the tangent
space and the map ¢.. We have coordinates on the tangent space so that

dg o a(t)

[poal = —a
=0

and

Psm([0]) = Dp(m)(/(0)).

The induced map ¢, is also commonly denoted T'¢ or d¢. These results follow for
neighborhoods in manifolds since these are manifolds too. Also note that if there is a
neighborhood U of m € M and ¢|,, is a diffeomorphism onto a neighborhood of ¢(m) then
Gsm 18 an isomorphism.

Proof.

(1) If ¢ : M — N is a smooth map and m € M then there is an induced map
Gum : TMp, — TNy defined by ¢, ([a]) = [¢poa]. We need to show this map is
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well-defined. Take charts (U, 0) on N centered on ¢(m) and (W, 1) on M centered
on m. If [a] = [f], then

doal)| _ dposn)
it |, at |,
osou ) (TZHD| )= @oveu (B )
Glovouovoa)t)] = G@osouowoRn)
Govoa)n)| = G@osonm)

SO ¢y is well defined on equivalence classes.

(2) f ¢: M — N and ¢ : N — R are smooth maps, then (¢)0 ). ([a]) = [Wopoa] =
Qp*é(m)([gb © a]) = ¢*¢(m) © ¢*m([a])

(3) Infam([@]) = [Inyoa] = [a]. If po¢™! = Iy then ¢y 0 (¢71)s = Inpw = I, -
Also, if ¢71 o ¢ = Iy, then (¢ 1), 0 ¢y = Iy, . Therefore ¢, is a bijection and
()71 = (671

(4) Let (U, ¢) be a coordinate neighborhood centered at m. We first show that TRg
is an n-dimensional vector space. Since R"™ requires no coordinate neighborhood
(i.e., it is itself), [a] is equivalent to [g] if and only if &/(0) = §'(0): two paths
are equivalent if they have the same derivative vector in R". Every vector v is
realized by a path ay, ay(t) = tv. This identification gives TRg the vector space
structure. We show that the linear structure is well defined on T'M,,,. The linear
structure on T'M,,, is induced by the structure on TR (where [o] +k[3] = [a+ k0]
and induced maps are linear) via the coordinate maps. If (V, %) is another chart
centered at m, then the structure defined by 1 and ¢ agree since (¢ o ¢~1), is an
isomorphism and (¢po 1), 09, = .. O

We can give explicit representatives for linear combinations of paths in the tangent space
TM,,. In the notation of the proof of Theorem 5.3*** part 4,

ko] + c[f] = [¢7 (kp o a +cho B)]

Note that the coordinate chart serves to move the paths into R"™ where addition and
multiplication makes sense.

Before we turn to the second interpretation of a tangent vector as a directional derivative,
we pause for a philosophical comment. We first learn of functions in our grade school
education . We learn to speak of the function as a whole or its value at particular points.
Nevertheless, the derivative at a point does not depend on the whole function nor is it
determined by the value at a single point. The derivative requires some open set about a
point but any open set will do. If M is a manifold and m € M, then let G,, be the set of
functions defined on some open neighborhood of m.
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Definition 5.6***. A function ¢ : G,, — R is called a derivation if for every f,g € G,
and a,b € R,

(1) 4(af +bg) = al(f)+ bl(g) and
(2) £(fg) = L(f)g(m)+ f(m)l(g)

Denote the space of derivations by D. The product rule which occurs in the definition
is called the Leibniz rule, just as it is in Calculus.

Proposition 5.7***. Elements of T M,, operate as derivations on G,,. In fact there is a
linear map ¢ : TM,, — D given by v — £,,.

The theorem is straightforward if the manifold is R™. If v € TR, then the derivation
¢, is the directional derivative in the direction v, i.e., £,(f) = Df(x)(v). On a manifold
the argument is really the same, but more technical as the directions are more difficult to
represent. We will see in Theorem 5.8%** that the derivations are exactly the directional
derivatives.

d t
Proof. If a : ((—e€,€),{0}) — (M,{m}) represents v then define ¢,(f) = fngm
t=0
The fact that ¢, is a linear functional and the Leibniz rule follow from these properties of
the derivative.
To show that / is a linear map requires calculation. Suppose (U, ¢) is a coordinate chart

centered at m. If [a] and [] are equivalence classes that represent tangent vectors in T'M,,
and ¢, k € R, then ¢~ ((kpa(t) + cpB(t))) represents k[a] + c[3]. Hence,

At = L e 9O
1 [(d(koa(t) 4+ coB(t))
s ( - t:o)
o d(ga(t) A(6B(1))
= [+ (k at  |,_, at  |,_,
L ( déa() L ( doB()
— kf.o: ( o t:0)+cf*¢* ( o t:o)
_ df (o~ ((a(t)))) Lo df (o~ (e(B(1))))

dt =0 dt =0

_df((af(t))) df ((B(t)))
=k dt t:0+c dt —o

=kl (f) + clig(f)

Lines 3 and 4 respectively follow from the linearity of the derivative and the total derivative
map. Therefore / is linear. [J

The second interpretation of tangent vectors is given in the following Theorem.
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Theorem 5.8***, The linear map ¢ : TM,, — D given by v — £, is an isomorphism.
The elements of T'M,, are the derivations on G,,.

Proof. We first note two properties on derivations.

(1) It f(m) = g(m) =0, then £(fg) =0
Since £(fg) = f(m)(g) + g(m)¢(f) = 0 +0.
(2) If k is a constant, then ¢(k) =0

Since {(k) = k(1) = k(¢(1) + ¢(1)) = 2kl(1), £(k) = 2¢(k) and ¢(k) = 0.

We now observe that ¢ is one-to-one. Let (U, ¢) be a coordinate chart centered at m.
Suppose v # 0 is a tangent vector. We will show that ¢, # 0. Let ¢.(v) = w; € R™. Note
that w; # 0. Then [¢~!(tw;)] = v where ¢ is the real variable. Let ws, -+ ,w, be a basis
for R" and (3., a;w;) = a1. Then

by(m 0 @) = Lig—1 (1w ) (T 0 @)

dm (¢~ (tw1)))
dt

t=0
dtw1
dt

= W1.

t=0

Next we argue that ¢ is onto. Let (U, ¢) be a coordinate chart centered at m and let
e; for i = 1,--- ,n be the standard basis for R". We consider the path t — ¢~ 1(te;) and
compute some useful values of /, i.e., the partial derivatives.

b ey (1) = LD g
_ Ofe!
or; |g
Let x;(a1,- -+ ,a,) = a;. Suppose d is any derivation. We will need to name certain values.

Let d(x; o ¢) = a;. These are just fixed numbers. Suppose f is C* on a neighborhood of
m. Taylor’s Theorem says that for p in a neighborhood of 0 € R™,

" " Ofog
fo¢‘1(p):f0¢‘1(0)+; U w3 Rutoia

1,7=1
where R;;(p fo (t—1) 8;;?; W dt are C* functions. So,
n
Of o™t
m)+; e, m,o¢+ jzl (zi06) - (z;00).

We now apply d. By (2), d(f(m)) = 0. Since z;o0¢(m) = 0, the terms d((R;;0¢)- (z;00)-
o0d—1
(.Z’j O¢)) =0 by (1) AISO, d( %T(i )6%0(;5) = ai€[¢—1(tei)](f). Hence, d= fzzyzl ai[p—1(te;)]s

and ¢ is onto. [
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Remark 5.9*%**, Tangent vectors to points in R".

The usual coordinates on R"™ give rise to standard coordinates on T,R". Let e; =
(0,---,0,1,0,---,0) with the only nonzero entry in the i-th spot. The path in R"™ defined
by «;(t) = te; + p is a path with «;(0) = p. Its equivalence class [a;] is a vector in T,R"

0 . In Advanced Calculus, the ordered basis i R ﬂ is
ox; » 01 » ox,, v
the usual basis in which the Jacobian matrix is usually written and sets up a natural
isomorphism 7,R"™ = R"™. The reader should notice that the isomorphism is only natural
because R™ has a natual basis and is not just an abstract n-dimensional vector space.
If p is a path in R", then p’(0) € T,)R"™ via this isomorphism. This notation is also
consistant with the operator notation (the second interpretation) since,

and we denote it

0
o] (D=1roa
p
d
= —f(tei +p)
dt =0
= gf ceR"~ TpRn
€T T=p

In the first line, the tangent vector operates via the second interpretation on the

p

Lq
function f.

Example 5.10%**, T M, for M an n-dimensional submanifold of R”.

Suppose M C RF is a submanifold and i : M — R is the inclusion. Take (U,, ¢) a
slice coordinate neighborhood system for R¥ centered at x as specified in the definition
of a submanifold, Definition 3.2*** ¢ : U, — U; x Uy. Under the natural coordinates of
TRE = R* TM, = ¢(U; x {0}) C R¥ and i,, has rank n.

To see these facts, note that ¢ oio (¢p|y,~ar) "t : Up x {0} — Uy x Us is the inclusion.
So, rank(i,) = rank((¢oio¢|y,nar)«) = n. Under the identification TR = R*, ¢, (R™ x
{0}) = D¢(x)(R™x{0}) C R*. This is the usual picture of the tangent space as a subspace
of R¥ (i.e., shifted to the origin) that is taught in advanced Calculus.

Example 5.11%**, TS" for S C R"*!, the n-sphere.

n+1
This is a special case of Example 5.10%**. Suppose (z1, -+ ,z,41) € S™, i.e., Z:Uf =
i=1
1. One of the z; must be nonzero, we assume that x,+; > 0. The other cases are
analogous. The inclusion from the Implicit Function Theorem is ¢|grn(z1,- -+, 2,) =
(1, s Ty /1= D000 2F) 80

_ 2iy it
D¢|Rn(l’1,"',.'Ifn>(’U1,"','Un)—(’Ul,"','Un, )

1- Zi:ﬁ’j?)

).
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Since zp41 >0, 41 = /1 — >, 27) and the tangent space is

n __ Z?:l —Z;V;
T oninyS™ = {01, v, ZEL200 |, € R)
Tn+1

n+1

= {(w1,- -y wnpa) | D wiws = 0}
=1

Example 5.12***, Recall that O(n) C Mat,x, = R"™ is a submanifold of dimension

Ln;l) which was shown in Example 3.7*** Then, we claim,

X € T4O(n) C Mat,xn
if and only if X A~" is skew.

This computation is a continuation of Example 3.7***. Suppose A € O(n). Since
O(n) = f7Y(I), TaO(n) C Ker(Df(A)). The dimension of the kernel and the dimension

of T4O(n) are both W Therefore TyO(n) = Ker(Df(A)). It is enough to show that
Ker(Df(A)) € {X | XA™!is skew} since the dimension of {X | XA™! is skew} is the
dimension of Skew,, y, = % (from Example 2.8d***). So it is enough to show that
XA~ s skew.

Again, from Example 3.7%** Df(A)(X) = AXT + XAT. If Df(A)(X) = 0, then
AXT = —X AT, Since A € O(n), A=t = AT, So,

(XA™HT = (XAT)T = AXT = - XxAT = - XA™!
Therefore X A~ is skew.

Example 5.13*%**. Recall that Sp(n,R) C Mat,x, = R™ is a submanifold of dimension

anﬂ) which was shown in Example 3.9***. Then, we claim,

X € TaSp(n,R) C Mat,,xn,

if and only if JXA~! is symmetric.

This computation is a continuation of Example 3.9***. Suppose A € Sp(n,R).

Since Sp(n,R) = f~1(J), TaSp(n,R) C Ker(Df(A)). The dimension of the kernel and
the dimension of T'4Sp(n, R) are both % Therefore T4 Sp(n,R) = Ker(Df(A)). It
is enough to show that Ker(Df(A)) C {X | JXA™!is symmetric} since the dimension
of {X | JXA™!is symmetric } is the dimension of Sym,x, = % (from Example
2.8¢***). So it is enough to show that JX A~! is symmetric.

Again, from Example 3.9%** Df(A)(X) = AJXT + XJAT. If Df(A)(X) = 0, then
—AJXT = XJAT. Since A € Sp(n,R), A=t = JATJT. So,

(JXAHT = (JXTJATIDT = (—JAIXT T = —JxJT AT J*
= JXJAT JTas JT = —J by Lemma 3.8%**
=JXA™!

Therefore X A~! is symmetric.
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Remark 5.14***, Notation for Tangent vectors

The space R"™ comes equipped with a canonical basis eq, - - - , e,, which allows us to pick
a canonical basis for TR!. For an n-manifold M, T'M, doesn’t have a natural basis. We
can give coordinates on T'M,, in terms of a chart. Suppose that (U, ¢) is a chart for a
neighborhood of p € U € M. Write ¢ = (¢1,-- -, ¢p) in terms of the coordinates on R".
Hence, ¢; = x; o . We can import the coordinates T’ Rg(p). Let

0
I

)
-1
o (5

)

#(p)

p
As a path 8%)_ is the equivalence class of ¢~ (te; + ¢(p)). As an operator,
“lp

0
I

Of o™t
(=122

P ¢(p)
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Exercises
Exercise 1***, Suppose F' : R* — R? by
F((w,,y,2)) = (wzyz, z%y°).
Compute F, and be explicit in exhibiting the bases in the notation used in Remark 5.9***,

Where is F' singular?

The reader may wish to review Example 2.10** and Exercise 4*** from chapter 3 for
the following exercise.

Exercise 2*¥**, Let g((z,y)) = 2% + y? and h((z,y)) = 2® + y*. Denote by G, and G},
the graphs of g and h which are submanifolds of R3. Let F : G, — G}, by

F:((z,y,2) = (2%, zyz,2° + 2°y).

The reader may wish to review Example 2.10** and Exercise *** from chapter 3.

a. Explicitly compute the derivative F, and be clear with your notation and bases.

b. Find the points of G, where F' is singular. What is the rank of F,,, for the various
singular points p € G .

Exercise 3***, Let F : R3 — S3 be defined by
F((0,¢,n)) = (sinnsin ¢ cos b, sinn sin ¢ sin 0, sinn cos ¢, cosn).

Use the charts from stereographic projection to compute F) in terms of the bases discussed
in Remark 5.9*** and Remark 5.14***,



