
CHAPTER 6

IMMERSIONS AND EMBEDDINGS

In this chapter we turn to inclusion maps of one manifold to another. If f : N → M is
an inclusion, then the image should also be a manifold. In chapter 3, we saw one situation
where a subset of f(N) ⊂ M inherited the structure of a manifold: when each point of
f(N) had a slice coordinate neighborhood of M . In this chapter, we show that is the only
way it can happen if f(N) is to inherit its structure from M .

We first review the situation for functions f : Rn → Rm for n ≤ m. The infinitesimal
condition of a function to be one-to-one is that the derivative is one-to-one. That the
derivative is one-to-one is not required for the function to be one-to-one, but it is sufficient
to guarantee the function is one-to-one in some neighborhood (by the Inverse Function
Theorem). On the other hand, if f(y0) = f(z0), then there is a point x0 on the segment
between y0 and z0 where Df(x0) is not one-to-one. This last statement is a consequence of
Rolle’s Theorem. This discussion, perhaps, serves as some motivation to study functions
whose derivative is injective. A second justification is that if f is to be a diffeomorphism
to its image, then the derivative must be invertible as a linear map.

While the phrase “f(N) inherits manifold structure form M” is vague, it certainly
includes that “f(N) inherits its topology from M” which is precise.

Definition 6.1***. Suppose f : N → M is a smooth map between manifolds. The map

f is called an immersion if f∗x : TxN → Tf(x)M is injective for all x ∈ N .

The derivative is injective at each point is not enough to guarantee that the func-
tion is one-to-one, as very simple example illustrate. Take f : R → R2 by f(x) =
(sin(2πx), cos(2πx)). This function is infinite-to-one as f(x + 1) = f(x), but Df(x) is
injective for all x ∈ R. Hence it is clear that we will need some other condition to obtain
an inclusion. An obvious first guess, that turns out to be inadequate, is that f is also
one-to-one.

Example 6.2***. A one-to-one immersion f : N →M in which f(N) is not a topological

manifold.

Let N = (
−π

4
,
3π

4
), M = R2, and f(x) = (cos(x) cos(2x), sin(x) cos(2x)). The image

f(
−π

4
,
3π

4
) is two petals of a four leafed rose. The map is one-to-one: only x =

π

4
maps

to (0, 0). Note that if
−π

4
or

3π

4
were in the domain, then they would also map to (0, 0).

Df(x) is rank one, so f is a one-to-one immersion. However, f(N) is not a topological
manifold. Suppose U ⊂ B1/2((0, 0)), then U ∩ f(N) cannot be homeomorphic to an open
interval. An interval with one point removed has two components, by U ∩f(N)\ (0, 0) has
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at least four components. Hence no neighborhood of (0, 0) ∈ f(N) is homeomorphic to an
open set in R.

Definition 6.3***. Suppose f : N → M is a smooth map between manifolds. The map

f is called an embedding if f is an immersion which is a homeomorphism to its image.

This extra topological condition is enough to guarantee that f(N) is a submanifold in
the strong sense of Definition 3.2***.

Theorem 6.4***. Suppose Nn and Mm are manifolds and f : N →M is a smooth map

of rank n. If f is a homeomorphism to its image, then f(N) is a submanifold of M and f

is a diffeomorphism to its image.

Proof. To show that f(N) is a submanifold of M , we suppose x0 ∈ N and we must produce
a slice neighborhood of f(x0) ∈ f(N) ⊂M . We produce this neighborhood in three steps.
The first step is to clean up the local picture by producing coordinate neighborhoods of x0

and f(x0) that properly align. The second step is to produce a coordinate neighborhood
of f(x0) in M in which f(N) looks like the graph of a function. The graph of a function
was already seen to be a submanifold, and we have virtually completed the construction.
The third step is to construct the slice neighborhood.

As a first step, we produce coordinate neighborhoods:

(1) (O2, ψ) a coordinate neighborhood in N centered at x0

(2) (U2, τ) a coordinate neighborhood in M centered at f(x0)
with f−1(U2 ∩N) = O2 and (τ ◦ f)∗x0

(TNx0
) = Rn × {0}

Take O1 ⊂ N a coordinate neighborhood in N centered at x0, and U1 ⊂ M such that
f−1(U1 ∩N) = O1. Such a U1 exists since f is a homeomorphism to its image, and f(N)
has the subspace topology. Take (U2, φ) a coordinate neighborhood of M centered at f(x0)
with U2 ⊂ U1. Let O2 ⊂ f−1(U2), x0 ∈ O2. Then (O2, ψ) is a coordinate neighborhood
of N centered at x0. Let v1, · · · , vn span (φ ◦ f)∗x0

(TNx0
) ⊂ Rm, and let v1, · · · , vm be a

basis of Rm. Let H : Rm → Rm be the isomorphism H(
∑m
i=1 aivi) = (a1, · · · , am). Then

(U2, H ◦φ) is a coordinate neighborhood in M centered at f(x0) and (H ◦φ◦f)∗x0
(TNx0

) =
Rn × {0}. Let τ = H ◦ φ and the coordinate neighborhoods are constructed.

The second step is to cut down the neighborhood of f(x0) so that f(N) looks like
the graph of a function. This step requires the inverse function theorem. We produce
coordinate neighborhoods:

(1) (O3, ψ) a coordinate neighborhood in N centered at x0

(2) (U3, τ) a coordinate neighborhood in M centered at f(x0), τ : U3 → W3 ×W2 ⊂
Rn × Rm−n

(3) a C∞ function g : W3 →W2

such that τ(f(N) ∩ U4) is the graph of g.

Let W2 ⊂ Rn and W4 ⊂ Rm−n be open sets such that W4 ×W2 is a neighborhood of
0 ∈ τ(U2) ∈ Rm. Now define U4 = τ−1(W4 ×W2) and O4 = f−1(U4). Then O4 ⊂ O2,
(O4, ψ) is a chart centered at x0, and U4 ⊂ U2, (U4, τ) is a chart centered at f(x0). Let
p1 : Rm → Rn be the projection onto the first n coordinates and p2 : Rm → Rm−n be the
projection onto the last m − n coordinates. The function p1 ◦ τ ◦ f ◦ ψ−1 maps the open
set ψ(O4) to W4. Since (τ ◦ f)∗x0

(TNx0
) = Rn × {0}, D(p1 ◦ τ ◦ f ◦ ψ−1)(0) has rank n,
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i.e., it is an isomorphism. By the Inverse Function Theorem, there is a neighborhood V of
0 ∈ Rn, V ⊂ ψ(O4) and a neighborhood W3 of 0 ∈ Rn, W3 ⊂W4 such that

p1 ◦ τ ◦ f ◦ ψ−1 : V →W3

is a diffeomorphism. Let O3 = ψ−1(V ) and U3 = τ−1(W3 × W2). Then (U3, τ) is a
coordinate chart centered at f(x0), τ : U3 → W3 ×W2, and (O3, ψ) is a coordinate chart
centered at x0. Let g be the composition

W3
(p1◦τ◦f◦ψ

−1)−1

−−−−−−−−−−−→ ψ−1(O3)
(p2◦τ◦f◦ψ

−1)
−−−−−−−−−→ W2

The function g is the composition of two C∞ functions. We now observe that the graph
of g is τ(f(N) ∩ U3). The points in τ(f(N) ∩ U3) are τ ◦ f ◦ ψ−1(ψ(O3)). If x ∈ ψ(O3),
then its coordinates in W3 ×W2 is (p1 ◦ τ ◦ f ◦ ψ−1(x), p2 ◦ τ ◦ f ◦ ψ−1)(x)) which agrees
with the graph of g. The second step is established.

The third step is to produce the slice neighborhood. Take W1 an open set with compact
closure and W̄1 ⊂ W3. Let ε be such that 0 < ε < max{|g(x)− y | x ∈ W̄1, y ∈ Rn \W2}.
Let V1 ⊂ W1 ×W2 be the open set {(x, y) ∈ W1 ×W2 | |g(x) − y| < ε}. Let γ : V1 →
W1 × Bε(0) by γ(x, y) = (x, y − g(x)). The map γ is a diffeomorphims with inverse
(x, y) 7→ (x, y+ g(x)). The image of the graph of g under γ is W1 ×{0}. Let U = τ−1(V1),
then (U, γ ◦ τ) is the slice neighborhood: y = g(x) if and only if γ(x, y) = (x, 0).

It remains to show that f is a diffeomorphism. Since f is a homeomorphism to its
image, f has a continuous inverse. We need to see that f is smooth as is its inverse. We
use Proposition 2.18***. Given x ∈ N , there is a chart of f(N) about x that arises from
a slice chart about x in M , Proposition 3.3***. Let (U, φ), φ : U → W1 × W2 be the
slice chart and (U ∩ f(N), p1 ◦ φ) the chart for f(N). The map f is a diffeomorphism if
p1 ◦φ◦f ◦ψ

−1 and its inverse are C∞ in a neighborhood of ψ(x) and φ(f(x)), respectively.
Now, since (U, φ) is a slice neighborhood,

p1 ◦ φ ◦ f ◦ ψ−1 = φ ◦ f ◦ ψ−1.

The derivative D(φ ◦ f ◦ψ−1)(x) has rank n since φ and ψ are diffeomorphisms, and f has
rank n. By the Inverse Function Theorem, p1 ◦ φ ◦ f ◦ ψ−1 is C∞ on a neighborhood of
φ(f(x)). By Proposition 2.18***, f and f−1 are smooth functions. �

Some authors use the terminology that the image of a manifold under an immersion is
a submanifold, but this usage is less common. Furthermore it requires the immersion in
the definition. We will use the term immersed submanifold.

Definition. Suppose N and M are manifolds and f : N → M is an immersion. Then

(N, f) is an immersed submanifold.

This terminology is suggested by Exercise 1.***

Proposition 6.5***. Suppose N and M are manifolds and f : N → M is a one-to-one

immersion. If N is compact, then f is an embedding.

Proof. We just need to show that f is a homeomorphism to its image. It is a one-to-one
continuous map from a compact space to a Hausdorff space. By a standard result in general
topology, f is a homeomorphism. �
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Exercises

Exercise 1***. Suppose that f : N →M is a one-to-one immersion. Show that for every

x ∈ N there is a neighborhood U of x such that f |U : U → M is an embedding. Show

that the result holds even if f is not one-to-one.

The next exercise is a difficult and interesting exercise.

Exercise 2***. Every compact n-manifold embeds in RN for some N .

This result is true without the hypothesis of compactness.
The dimension N can be taken to be 2n. That every n-manifold embedds in R2n is a

result by H. Whitney. It is also interesting to note that every compact n-manifold immerses
in R2n−α(n) where α(n) is the number of ones in the dyadic expansion of n. This result
was proven by Ralph Cohen. The connection to the dyadic expansion and that this result
is the best possible arose in work by William S. Massey.

Exercise 3***. Let f : RP2 → R3 by f([x, y, z]) = (xy, xz, yz). Show that f is a

well-defined smooth function. Is f one-to-one? Is f an immersion?

Let g : RP2 → R4 by g([x, y, z]) = (xy, xz, yz, x4). Is g an embedding or an immersion?


