
CHAPTER 7

VECTOR BUNDLES

We next begin addressing the question: how do we assemble the tangent spaces at various
points of a manifold into a coherent whole? In order to guide the decision, consider the
case of U ⊂ Rn an open subset. We reflect on two aspects.

The first aspect is that the total derivative of a C∞ function should change in a C∞

manner from point to point. Consider the C∞ map f : U → Rm. Each point x ∈ U gives
a linear map f∗x = Df(x) : Rn → Rm the total derivative which is represented by an
m × n matrix, the Jacobian matrix of Df(x). The Jacobian matrix is a matrix of C∞

functions in x. While for each x ∈ U there is a linear map

Df(x) : TUx = Rn → Rm = TRm
f(x)

these fit together to give a C∞ map on the product

U × Rn → Rm × Rm

(x, v) 7→ (f(x), Df(x)(v)).

The second aspect is that we wish to define vector fields. A vector field is a choice of
tangent vector at each point. For an open subset U of Rn, a vector field is just given by a
function g : U → Rn (as the reader probably learned in Advanced Calculus). In order to
keep track of the tail, we write the vector field as

V : U → U × Rn

x 7→ (x, g(x)).

Any C∞ function g gives a vector field. The complication on a manifold M is that the
vector with tail at x ∈M must be in the vector space TMx and these vector spaces change
with x. In this chapter, we study the required concepts to assemble the tangent spaces of
a manifold into a coherent whole and construct the tangent bundle. The tangent bundle
is an example of an object called a vector bundle.

Definition 7.1***. Suppose Mn is a manifold. A real vector bundle over M consists of
a topological space E, a continuous map π : E → M and a real vector space V (called
the fiber) such that for each m ∈M , π−1(m) is a vector space isomorphic to V , and there
exists an open neighborhood U of m, and a homeomorphism

µU : π−1(U) → U × V
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2 CHAPTER 7 VECTOR BUNDLES

such that µ−1
U

(m,−) : {m} × V → π−1(m) is a linear isomorphism.

The bundle is smooth if E is a smooth manifold, π is smooth, and µU is a diffeomorphism.

In these notes, all vector bundles will be smooth. We may denote a vector bundle by
π : E → M (and suppress the vector space) or as E . If the dimension of the vector space
is m then the bundle is often called an m-plane bundle. A 1-plane bundle is also called
a line bundle. A bundle over a manifold is trivial if it is simply the Cartesian product of
the manifold and a vector space. The neighborhoods U over which the vector bundle looks
like a product are called trivializing neighborhoods.

Note that µW ◦ µ−1
U

: {m} × V → {m} × V is a linear isomorphism. Denote this map
hWU (m).

Definition 7.2***. If µU : π−1(U) → U × V and µW : π−1(W) → W × V are trivial
neighborhoods of a vector bundle then

µW ◦ µ−1
U

: (W ∩ U) × V → (W ∩ U) × V

(x, v) 7→ (x, hWU(x)v)

where hWU : W ∩ U → GL(V ). The hWU are associated to each pair of trivial neighbor-
hoods (U , µU ) and (W, µW). They are called transition functions.

Theorem 7.3***. Every smooth vector bundle has smooth transition functions, i.e.,
hWU : W ∩ U → GL(V ) is smooth.

Proof. The map µW ◦ µ−1
U

defines hWU so the issue is to see that hWU is smooth. Let

hWU (x) be the matrix (hij(x))ij in a fixed basis for V . Then, µW ◦ µ−1
U

(x, (r1, · · · , rn)) =
(x, (

∑

j h1j(x)rj, · · · ,
∑

j hnj(x)rj)). To see that each hij(x) is smooth let ~r vary over ei

for i = 1, · · ·n. Since µW ◦ µ−1
U

is smooth, so are its coordinate functions. �

Example 7.4***. Line Bundles Over S1.

We take the circle to be S1 = {eθi | θ ∈ R} the unit circle in the complex plane
{(cos θ, sin θ) | θ ∈ R2}.

One line bundle over the circle is ε1S1 , the trivial bundle πε : S1×R → S1 by πε((e
θi, r)) =

eθi. For the trivialization neighborhoods, only one is needed: take U = S1.

There is another, more interesting line bundle over S1. Let E = {(eθi, re
θ
2

i) | r, θ ∈ R}

and πγ : E → S1 by πγ((eθi, re
θ
2

i)) = eθi. Denote this bundle γ1
S1 Notice that π−1

γ (eθi)
is a real line in the complex plane. Two values of θ that differ by 2π determine the same

point, so θ
2

is not well-defined. Nevertheless, the line in the complex plane through e
θ
2
i is

well defined since e
2π
2

i = −1.

We now construct the trivializing neighborhoods. Let U = S1 \ {1} = {(eθi, re
θ
2
i) | θ ∈

(0, 2π)} and W = S1 \ {−1} = {(eθi, re
θ
2

i) | θ ∈ (π, 3π)}. Now,

(1)
µU : π−1

γ (U) → U × R

(eθi, re
θ
2
i) 7→ (eθi, r).
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This map is well defined since θ ∈ (0, 2π), a restricted domain which allows us to determine

θ from e
θ
2
i. We similarly define

(2)
µW : π−1

γ (U) → U × R

(eθi, re
θ
2
i) 7→ (eθi, r)

for θ ∈ (π, 3π).

We next check the compatibility condition. The set U ∩W is S1 \{1,−1} = {(eθi, re
θ
2

i) |
θ ∈ (0, π) ∪ (π, 2π)}. Suppose θ ∈ (0, π) then

µWµ−1
U ((eθi, r)) = µW ((eθi, re

θ
2
i))

= µW ((e(θ+2π)i,−re
θ+2π

2
i))

= (e(θ+2π)i,−r)

= (eθi,−r)

Notice that we had to change the expression for the second coordinate because formulas
(1) and (2) require different domains. We have that hUW (eθi)(r) = −r for θ ∈ (0, π). Now,
suppose θ ∈ (π, 2π), then

µWµ−1
U ((eθi, r)) = µW ((eθi, re

θ
2
i))

= (eθi, r)

We have that hUW (eθi)(r) = r for θ ∈ (π, 2π). Therefore the transition function hUW :
U ∩W → Gl(1,R) is

hUW (x) =

{

−1 if Im(x) > 0

1 if Im(x) < 0
.

Example 7.5***. The Tautological Line Bundle Over RPn

Define a Z2 action on Sn × R by (−1) · (x, r) = (−x,−r). We show that this action
satisfies the hypotheses of Theorem 2.23***. Suppose (x, r) ∈ Sn × R. Take U an open
neighborhood of x in Sn that is entirely in one hemisphere. Then it follows that U∩−U = ∅,
and U × R and −U × R are disjoint neighborhoods of (x, r) and (−1) · (x, r). Let E =
Sn ×R/Z2. By 2.23***, E is a smooth manifold and the quotient map q̃ : Sn ×R → E is
a local diffeomorphism. Let πE : E → RPn by πE(x, r) = [(x, r)]. The following diagram
is a commutative diagram of smooth maps,

Sn × R
q̃

−−−−→ E

π





y





y

πE

Sn q
−−−−→ RPn

where π(x, r) = x and q is the quotient map from Example 2.25***, RPn. Let U be an
open set in Sn that is entirely in one hemisphere so that U ∩ −U = ∅. Then q̃|U×R :
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U × R → π−1
E (q(U)) is a diffeomorphism and linear on each fiber. If V is another such

open subset of Sn then

(q̃|V ×R)−1 ◦ q̃|U×R : U ∩ (V ∪ −V ) × R → U ∩ (V ∪ −V ) × R

(x, r) 7→ (x, h(x)r)

where

h(x) =

{

1 if x ∈ U ∩ V

−1 if x ∈ U ∩ −V

Hence, πE : E → RPn is a vector bundle.

Proposition 7.6***. Transition functions satisfy the following property:

hWU (x) = hWO(x) ◦ hOU (x) for x ∈ W ∩ O ∩ U .

Proof. This property follows from the definition of transition functions and is the equation
of the last coordinate of the equation below.

(µW ◦ µ−1
O

) ◦ (µO ◦ µ−1
U

) = µW ◦ µ−1
U

�

The next theorem shows that a choice of transition functions consistent with the prop-
erties of the last proposition will determine the vector bundle. A bundle can be defined
by the gluing (transition) functions. First a lemma.

Lemma 7.7***. Suppose X is a set and {Ui | i ∈ I} is a collection of subsets. If
hij : Ui ∩ Uj → GL(n,R) for all (i, j) ∈ I × I satisfies hij(x) = hik(x) ◦ hkj(x) for
x ∈ Ui ∩ Uj ∩ Uk, then they also satisfy

(1) hii(x) = IV for x ∈ Ui

(2) hij(x) = (hji(x))
−1 for x ∈ Ui ∩ Uj

Proof. Since hii(x) = hii(x) ◦ hii(x) and hii(x) has an inverse, multiply both sides by
hii(x)

−1 to get (1). Since hij(x)hji(x) = hii(x) = IV by the hypothesis and (1), hij(x) =
hji(x)

−1. �

Theorem 7.8***. Suppose M is a manifold and {(Ui, ψi)|i ∈ I} is a countable atlas for
M . Suppose V = Rm is a vector space and for all (i, j) ∈ I × I there is a C∞ function
fij : Ui ∩ Uj → GL(V ) such that fkj(x) ◦ fji(x) = fki(x) for all x ∈ Ui ∩ Uj ∩ Uk.

On {(u, v, i)|i ∈ I, u ∈ Ui, v ∈ V } let (u, v, i) v (u′, v′, i′) if and only if u = u′, fi′i(u)(v) =
v′.

Then v is an equivalence relation. Furthermore, if E =
{(u, v, i)|i ∈ I, u ∈ Ui, v ∈ V }

v
and π([u, v, i]) = u, then π : E →M is a smooth vector bundle with fiber V .

Proof. We first show that v is an equivalence relation, The functions fij also satisfy the
hypotheses of Lemma 7.7***. The relation v is an equivalence relation as reflexivity,
symmetry and transitivity are guaranteed by conditions 1 and 2 of Lemma 7.7***, and
condition 3 is the hypothesis on the fij ’s.

We must verify the various requirements of the definition of a vector bundle for π : E →
M . The longest part is done first, showing that E is a manifold.
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We first introduce the map µ. Let µi : π−1(Ui) → Ui × V by µi([u, v, i]) = (u, v). This
map is a bijection: if u ∈ Ui then the class [u, v, i] has (u, v, i) as the unique representative
with the last coordinate i by the definition of v as fii(u) = IV .

We verify that E is a smooth manifold by using Theorem 2.15*** Let φi = (ψi×IV )◦µi

so φi : π−1(Ui) → ψi(Ui) × V ⊂ Rn × V = Rn+m. We claim that E is a smooth manifold
with atlas A = {(π−1(Ui), φi)|i ∈ I}. We verify the conditions of Theorem 2.15*** with
X = E and A. The first two conditions are true, π−1(Ui) ⊂ E and

⋃

i∈I π
−1(Ui) = E

by construction. Next, the map φi is a bijection since both µi : π−1(Ui) → Ui × V and
ψi × IV : Ui × V → ψi(Ui) × V are bijections. The fourth condition is also immediate:
φi : π−1(Ui) → ψi(Ui)×V ⊂ Rn×V and φi : π−1(Ui)∩π

−1(Uj) → ψi(Ui∩Uj)×V ⊂ Rn×V
are both open. The last condition is that φjφ

−1
i : φi(π

−1(Ui) ∩ π
−1(Uj)) → φj(π

−1(Ui) ∩
π−1(Uj)) is smooth. We now show that the map is smooth. Suppose x ∈ ψi(Ui ∩ Uj) and
v ∈ V . Then,

φjφ
−1
i (x, v) = (ψj × IV ) ◦ µj ◦ µ

−1
i ◦ (ψ−1

i × IV )(x, v)

= (ψj × IV ) ◦ µj ◦ µ
−1
i (ψ−1

i (x), v)

= (ψj × IV ) ◦ µj([ψ
−1
i (x), v, i])

= ψj × IV ◦ µj([ψ
−1
i (x), fji(ψ

−1
i (x))(v), j]) by the equivalence relation

= ψj × IV (ψ−1
i (x), fji(ψ

−1
i (x))(v))

= (ψjψ
−1
i (x), fji(ψ

−1
i (x))(v))

We have shown that φjφ
−1
i (x, v) = (ψjψ

−1
i (x), fji(ψ

−1
i (x))(v)). The first coordinate is

smooth since M is a manifold. The second coordinate map is smooth since it is a compo-
sition of the following smooth maps:

ψ(Ui ∩ Uj) × Rm f1
−→ (Ui ∩ Uj) × Rm f2

−→ GL(n,R) × Rm f3
−→ Rm

where f1(y, v) = (ψ−1(y), v) is smooth since ψ−1 is smooth, f2(x, v) = (fji(x), v) is
smooth by Theorem 7.3***, and f3 is smooth since it is evaluation of a linear function at
a vector, i.e., matrix multiplication. The hypotheses of Theorem 2.15*** are verified. We
show in the next two paragraphs that E is second countable and Hausdorff, and hence a
manifold.

Since I is countable, {π−1(Ui)|i ∈ I} is countable and so E is a second countable space.

Suppose [u, v, i], [u′, v′, j] ∈ E. If u 6= u′, then there are open sets O1 and O2 that
separate u and u′ in M . Hence π−1(O1) and π−1(O1) separate [u, v, i] and [u′, v′, j] in E.
If u = u′, then [u, v, i], [u′, v′, j] ∈ π−1(Ui) which is Hausdorff. Therefore E is Hausdorff
and E is a manifold.

We now show that π : E → M is a vector bundle. The vector space structure on
π−1(m) is defined by the structure on V: a[m, v, i] + b[m, v′, i] = [m, av + bv′, i]. This is
well defined since if [m, v, i] = [m,w, j] and [m, v′, i] = [m,w′, j] then fij(m)(w) = v and
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fij(m)(w′) = v′ so

a[m,w, j] + b[m,w′, j] = a[m, fij(m)(w), i] + b[m, fij(m)(w′), i]

= [m, afij(m)(w) + bfij(m)(w′), i]

= [m, fij(m)(aw + bw′), i]

= [m, av + bv′, i]

The map µi : π−1(Ui) → Ui ×V is a diffeomorphism. This was shown above as these maps
are part of the manifold structure for E (Theorem 2.21***).
µ−1

i (m,−) : V → π−1(m) is an isomorphism as µ−1
i (m,−)(v) = µ−1

i (m, v) = [m, v, i].
π is smooth since if m is in the coordinate neighborhood given by (Ui, ψi), then [m, v, i]

is in the coordinate neighborhood given by (π−1(Ui), φi) and ψi ◦ π ◦ φ−1
i (x, v) = x for

(x, v) ∈ φi(π
−1(Ui)) ⊂ Rn × V . �

Definition 7.9***. A bundle map between two vector bundles E1
π1−→M1 and E2

π2−→M2

is a pair of smooth maps f : E1 → E2 and g : M1 → M2 such that π2 ◦ f = g ◦ π1 and
f |x : π−1

1 (x) → π−1
2 (g(x)) is linear.

Definition 7.10***. Suppose that E1
π1−→M and E2

π2−→M are bundles over a manifold
M . A bundle equivalence between these bundles is a a bundle map (f, IM) over the identity
is an isomorphism on each fiber.

Please note the result Exercise 2***: if E1 an E2 are vector bundles over the manifold M
and if E1 is bundle equivalent to E2 by a bundle equivalence f , then E2 is bundle equivalent
to E1 by f−1 which is also a bundle equivalence.

Definition 7.11***. A section of a vector bundle, E
π
−→M is a smooth map s : M → E

such that π ◦ s = IM .

Notation 7.12***. Suppose E is E
π
−→ M a vector bundle with fiber V . Let Γ(E) or

Γ(E) denote the sections of the vector bundle E .

Example 7.13***. The sections of the trivial bundle.

The sections of εnM are smooth maps s : M →M × Rn with π(s(x)) = x for all x ∈M .
Hence, the first coordinate of s(x) is x and s(x) = (x, f(x)) for any smooth function
f : M → Rn. Therefore, C∞(M,Rn) = Γ(εnM ) by the correspondence: if f ∈ C∞(M,Rn)
then s ∈ Γ(εnM ) with s(x) = (x, f(x)).

Example 7.14***. The sections of line bundles over S1

We first note that the function p : R → S1 by p(θ) = (cos θ, sin θ) ∈ R2 or eθi ∈ C

is a local diffeomorphism. An inverse of p : (θ0 − π
2 , θ0 + π

2 ) → p(θ0 − π
2 , θ0 + π

2 ) is

p−1(x, y) = arcsin(y cos θ0 − x sin θ0) + θ0. Of course, p−1 isn’t globally well defined as
p−1(cos θ, sin θ) = {θ + 2kπ | k ∈ Z}

In Example 7.13*** it was shown that the sections of ε1S1 were given by the smooth
functions f : S1 → R. We also note that these sections can be given by the functions
{g : R → R | g(θ+ 2π) = g(θ)}, i.e., periodic functions of the angle rather than of a point
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on the circle. Given a section s ∈ Γ(ε1S1) with s(cos θ, sin θ) = ((cos θ, sin θ), f(cosθ, sin θ),
the function g is g(θ) = f(cos θ, sin θ). Conversely, given a periodic function g let the
section s be s(cos θ, sin θ) = ((cos θ, sin θ), g(θ)). The section is well-defined since g is
periodic and it is smooth since p has a smooth local inverse.

We now describe the sections of γ1
S1 . The bundle was described in Example 7.4***. We

show that Γ(γ1
S1) correspond to the functions {g : R → R | g(θ + 2π) = −g(θ)}. Given a

function g take s to be the section s(eθi) = (eθi, g(θ)e
θ
2
i). Conversely, given a section s,

it can be written as s(eθi) = (eθi, h(eθi)), where by the definition of γ1
S1 , h(eθi) is a real

multiple of e
θ
2
i. Then let g(θ) = h(eθi)e−

θ
2
i.

Remark 7.15***. A section of a vector bundle is a way of choosing an element in each
fiber that varies in a smooth manner. One speaks of an “element of a vector space” and
the appropriate generalization to a vector bundle usually is a “section of a vector bundle.”

Example 7.16***. The zero section

Every vector space has a distinguished element: zero, the additive identity. If E
π
−→ M

is a vector bundle, let 0x ∈ π−1(x) be the zero. Let z : M → E be defined by z(x) = 0x

for all x ∈ M . The section z is called the zero section.
We check that this map is a smooth section. If x ∈M take an open neighborhood that

is both part of a coordinate neighborhood (U, φ) and a trivializing neighborhood for E,
µ : U → U × Rm. The map z is smooth on U if and only if Z = (φ × IV ) ◦ µ ◦ z ◦ φ−1 :
φ(U) → φ(U) × Rm is smooth. The map Z is Z(x) = (x, 0) which is a smooth map of an
open subset of Rn to Rn × Rm. Therefore, z is a smooth section.

Proposition 7.17***. A bundle π : E → M with an n-dimensional fiber is a trivial
bundle if and only if it has n sections {s1, · · · , sn} such that s1(x), · · · , sn(x) are a basis
for π−1(x) for each x ∈M .

Proof. If f : M × Rn → E is a bundle equivalence over M , then let si be defined by
si(x) = f(x, ei). The sections {s1, · · · , sn} are the required set of sections. Note that
si(x) = (x, ei) are the required sections for the trivial bundle.

If π : E → M is a bundle with sections {s1, · · · , sn} such that s1(x), · · · , sn(x) are a
basis for π−1(x) for each x ∈M , then

f : M × Rn → E

defined by f(x, (a1, · · · , an)) =
∑n

i=1 aisi(x) is a smooth map and isomorphism on each
fiber. Therefore f is a bundle equivalence. �

Theorem 7.18***. If N is an n-manifold, then there is a vector bundle πN : TN → N
such that π−1

N (x) = TMx. Furthermore, if M is an m-manifold, and f : N → M is a
smooth map, then there is a bundle map f∗ : TN → TM define by f∗|TNx

= f∗x for each
x ∈ N , i.e., the bundle map on TNx is the derivative map.

The first part of the theorem asserts the existence of a vector bundle. The substance,
the justification to call the bundle the tangent bundle is in the second paragraph. The
derivative map at each point combines to form a smooth map. It indicates that the
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construction of the tangent bundle is the philosophically correct manner to combine the
tangent spaces into a coherent whole.

Proof of Theorem 7.18***. For U an open set in Rn, the tangent bundle is a simple cross

product U ×Rn. A basis in the fiber over a point p is
n
∑

i=1

ai

∂

∂xi

∣

∣

∣

∣

p

where ∂
∂xi

∣

∣

∣

p
represents

the equivalence class of the path t 7→ tei + p. Observe that TU = U ×Rn agrees with the
usual notions from Calculus as discussed in the beginning of this chapter.

We now construct the tangent bundle for a smooth n-manifold M . Let {(Ui, φi)|i ∈ I}
be a countable atlas, and let fji : Ui ∩ Uj → GL(Rn) be defined by

fji(u) = (φj ◦ φ
−1
i )∗φi(u) = D(φj ◦ φ

−1
i )(φi(u)).

First note that since φj ◦φ
−1
i is a C∞ function on an open set of Rn into Rn, each matrix

entry of the Jacobian of φj ◦φ
−1
i is a C∞ function. Therefore, D(φj ◦φ

−1
i )(φi(u)) = fji(u)

is a smooth function.
We next show that these maps satisfy the conditions of Theorem 7.8*** and so define

a vector bundle, TM → M . The above functions fji(u) = (φj ◦ φ−1
i )∗φi(u) satisfy the

condition for transition functions. Suppose u ∈ Ui ∩ Uj ∩ Uk, then (φj ◦ φ
−1
k )∗φk(u)(φk ◦

φ−1
i )∗φi(u) = (φj ◦ φ−1

i )∗φi(u) by the chain rule. Hence fjk(u) ◦ fki(u) = fji(u). The
hyposthesis of Theorem 7.8*** are satisfied and so give a well-defined bundle, the tangent
bundle of M .

The next task is to show that if f : N → M is a smooth map, then there is a bundle
map f∗ : TN → TM define by f∗|TNx

= f∗x for each x ∈ N .
The map f∗ is well defined and linear on each tangent space TNx by the given formula.

It must be shown that it is a smooth map from TN to TM . Let πN : TN → N and
πM : TM → M be the projections for the tangent bundles. Take any point in TN . It is
in the fiber over some point in N , say x ∈ N .

Let (W,ψ) be a chart on M with f(x) ∈ W . By construction of the tangent bundle,
π−1

M (W ) is open in TM and

Ψ : π−1
M (W ) → ψ(W ) × Rm

v 7→ (ψ(πM (v)), ψ∗πM(v)(v))

is a coordinate chart.
Let (U, φ) be a chart on N with x ∈ U and f(U) ⊂ W . Again, by construction of the

tangent bundle, π−1
N (U) is open in TN and

Φ : π−1
N (U) → φ(U) × Rn

v 7→ (φ(πN (v)), φ∗πN(v)(v))

is a coordinate chart. We check smoothness by using Proposition 2.18***. Suppose (x, v) ∈
Φ(π−1(U) ⊂ Rn × Rn. Then compute

Ψ ◦ f∗ ◦ Φ−1((x, v)) = (ψ ◦ f ◦ φ−1(x), ψ∗f(φ−1(x) ◦ f∗φ−1(x) ◦ φ
−1
∗x (v))

= (ψ ◦ f ◦ φ−1(x), (ψ ◦ f ◦ φ−1)∗x(v)).
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The last line follows by the chain rule, Theorem 5.3*** part 2. This map is C∞ in (x, v)
since it the derivative map for ψ ◦ f ◦ φ−1 a C∞ function between open subsets of Rn and
Rm. �

Definition 7.19***. A section of the tangent bundle of a manifold M is called a vector
field on M .

Example 7.20***. The tangent bundle to the 2-sphere TS2.

Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. Recall from Calculus that the tangent
plane to S2 translated to (0, 0, 0) is P(x,y,z) = {(v1, v2, v3) ∈ R3 | (x, y, z) · (v1, v2, v3) = 0}.
Let E = {(~x,~v) ∈ R3 × R3 | |~x| = 1 and ~v ∈ P~x} and π : E → S2 by π((~x,~v)) = ~x is a
vector bundle which is bundle equivalent to the tangent bundle.

We first examine the tangent bundle of S2 using the atlas constructed in Example
2.9A*** for S2. Let U1 = S2 \ {(0, 0, 1)} and U2 = S2 \ {(0, 0,−1)}. Let φi : Ui → R2

for i = 1 and 2 be φ1(x, y, z) = ( 2x
1−z

, 2y
1−z

) and φ2(x, y, z) = ( 2x
1+z

, 2y
1+z

). Then φ−1
1 (x, y) =

( 4x
x2+y2+4 ,

4y
x2+y2+4 ,

x2+y2
−4

x2+y2+4 ) and φ2 ◦ φ
−1
1 (x, y) = ( 4x

x2+y2 ,
4y

x2+y2 ). The transition function

is then g21 : U1 ∩ U2 → Gl(2,R) defined by

(Eq 1***) g21(~x) = D(φ2 ◦ φ
−1
1 )(φ1(~x))

and

D(φ2 ◦ φ
−1
1 )((x, y)) =

(

4(y2
−x2)

(x2+y2)2
−8xy

(x2+y2)2

−8xy
(x2+y2)2

4(x2
−y2)

(x2+y2)2

)

It is C∞ since φ1 and D(φ2 ◦ φ
−1
1 ) are C∞.

We now turn to π : E → S2. For each ~x ∈ S2, we note that π−1(~x) = P~x is a vector space,
a two dimensional subspace of R3. We define homeomorphisms hi : Ui × R2 → π−1(Ui)
for i = 1 and 2. These maps will be used to show E is a 4-manifold. They will commute
with the projections and be linear on each fiber. Their inverses will be the trivialization
maps for the bundle. The compatibility condition for the charts is the smoothness of the
transition functions.

Let

h1 : U1 × Rn → π−1(U1)

(~x,~v) 7→ (~x,Dφ−1
1 (φ1(~x))~v)

and
h2 : U2 × Rn → π−1(U2)

(~x,~v) 7→ (~x,Dφ−1
2 (φ2(~x))~v)

The inverses are

µ1 : π−1(U1) → U1 × Rn

(~x,~v) 7→ (~x,Dφ1(~x)~v)
and

µ2 : π−1(U2) → U2 × Rn

(~x,~v) 7→ (~x,Dφ2(~x)~v)

These maps are homeomorphisms as

Dφ−1
i (φi(~x))Dφi(~x) = IP~x

and Dφi(~x)Dφ
−1
i (φi(~x)) = IR2
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by the chain rule. Note that the transition function for the bundle E is

g21(~x) = (Dφ2(~x)Dφ
−1
1 (φ1(~x)) = D(φ2 ◦ φ

−1
1 )(φ1(~x))

which is the same as we computed for the tangent bundle.
We further pursue Example 7.20*** and prove that TS2 is not trivial. We actually show

more. We prove that S2 doesn’t have any nowhere zero section.
The proof of this theorem requires that the reader knows some of the basics of homotopy.

We will require

(1) The definition of a homotopy class.
(2) The fact that the map f : S1 → R2 \ {(0, 0)} defined by f(eθi) = e2θi or

f((cos θ, sin θ)) = (cos 2θ, sin 2θ) is not homotopic to a constant map.

We state the specific elements we will use in the following lemma.

Lemma 7.21***. Suppose g : S1 → GL(2,R) is a continuous function. For any continu-
ous function f : S1 → R2 \{(0, 0)}, let G(f) : S1 → R2 \{(0, 0)} by G(f)(p) = g(p)(f(p)).
We then have

(1) If f : S1 → R2 \ {(0, 0)} be any continuous map, then the map f is homotopic to
−f .

(2) If f, h : S1 → R2 \ {(0, 0)} and f is homotopic to h, then G(f) is homotopic to
G(h).

(3) Let S1 ⊂ S2 be the equator and g the transition function that from TS2 defined
in (Eq I***) of Example 7.20***. Furthermore, let ι : S1 → R2 \ {(0, 0)} be the
constant map ι(p) = (1, 0). Then the map G(ι) is not homotopic to a constant
map.

Proof. To show item 1 we give a homotopy from f to −f . Let H : S1×[0, 1] → R2\{(0, 0)}
by

H(p, t) =

(

cosπt sinπt
− sinπt cosπt

)

f(p).

Item 2 is also easy to see by the appropriate homotopy. Suppose that H : S1 × [0, 1] →
R2 \ {(0, 0) is the homotopy between f and h, then (p, t) 7→ g(p)(H(p, t)) is the homotopy
between G(f) and G(h).

To show item 3, we first write p = (x, y, 0) for p on the equator of S2 and recall that
φ1(p) = (2x, 2y) for the map φ, stereographic projection (see Example 7.20***). Since the
transition function g(p) is the matrix given in (Eq I***) of Example 7.20***,

G(ι)(p) = D(φ2 ◦ φ
−1
1 )(φ1(p))(ι(p))

=

(

4((2y)2−(2x)2)
((2x)2+(2y)2)2

−8(2x2y)
((2x)2+(2y)2)2

−8(2x2y)
((2x)2+(2y)2)2

4((2x)2−(2y)2)
((2x)2+(2y)2)2

)

(

0
1

)

=

(

y2 − x2

−2xy

)

The last line follows since x2 +y2 = 1. Writing x = cos θ and y = sin θ, G(ι)(cos θ, sin θ) =
−(cos 2θ, sin 2θ) using the double angle identities. By item 1, G(ι) is homotopic to the
map (cos θ, sin θ) 7→ (cos 2θ, sin 2θ), which is not homotopic to a constant map. �
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Theorem 7.22***. There is no nonzero vector field on S2.

As a consequence of this theorem and Proposition 7.17***, TS2 is not equivalent to a
trivial vector bundle.

Proof. We use proof by contradition. Suppose V is a nowhere zero section of TS2, i.e., V is
a nowhere zero vector field. We examine the two maps that characterize the vector field in
the trivializing neighborhoods for TS2 as given in Example 7.20***. We use the maps and
notation from Example 7.20***. For each p ∈ S2 \ {(0, 0, 1)}, φ1∗(Vp) = (φ1(p), f(p)) ∈
R2 × R2 \ {(0, 0)} and for each p ∈ S2 \ {(0, 0,−1)}, φ2∗(Vp) = (φ2(p), h(p)) ∈ R2 × R2 \
{(0, 0)}. The images of the maps f and g avoid (0, 0) precisely because the vector field is
nowhere zero. It is easy to see that f and g are homotopic to constant maps. The null
homotopy for f is H : S1 × [0, 1] → R2 \ {(0, 0)} by H(p, t) = f(φ−1

1 (tφ1(p))) and for h is
K : S1 × [0, 1] → R2 \ {(0, 0)} by K(p, t) = h(φ−1

1 (tφ1(p))). The maps f and h are also
related by the transition function on the sphere by h(p) = g21(p)f(p). In other words, if f
is null homotopic then G(f) is also null homotopic. This conclusion contradicts item 3 of
the lemma. Therefore TS2 doesn’t have a nonzero section. �

Duality and Dual Bundles.

We review the notion of duality from linear algebra. Suppose V is a vector space. Let
V ∗ be the dual vector space Hom(V,R), the vector space of linear functions from V to R.
The relationship between V and V ∗ is usually expressed in the evalutation pairing:

V ∗ × V → R

(f, v) 7→ f(v)

We give the basic properties of V ∗ in the next two theorems. The first theorem is usually
covered in a linear algebra course. The second isn’t difficult, but has a flavor different from
a first course in linear algebra.

Theorem 7.23. For any finite dimensional vector space V , let V ∗ be the dual space of
linear functionals.

(1) V ∗ is a vector space of the same dimension as V .
(2) Suppose that e1, · · · , en is a basis for V . Let e∗i (

∑n
j=1 ajej) = ai. Then e∗1, · · · , e

∗
n

is a basis for V ∗ called the dual basis.
(3) Let V and W be vector spaces and f : V →W be a linear map. Let f ∗ : W ∗ → V ∗

by f∗(g) = g ◦ f .

Proof. We can add linear functionals and multiply be a constant. If fact V ∗ = Hom(V,R)
is isomorphic to the vector space of n by 1 matrices. The isomorphism is given by a choice
of basis. If the choice of basis is e1, · · · , en, then e∗i is the matrix with a 1 in the ith row
and zeros elsewhere. This shows items 1 and 2.

Item 3 is a short computation. Suppose g1, g2 ∈ V ∗. Then,

f∗(ag1 + bg2) = (ag1 + bg2) ◦ f

= ag1 ◦ f + bg2 ◦ f

= f∗(ag1)

= af∗(g1) + bf∗(ag2)

�
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Theorem 7.24***. The following are properties of ∗. Suppose V , W and X are finite
dimensional vector spaces.

(1) If h : V →W and f : W → X are linear, then (f ◦ h)∗ = h∗ ◦ f∗

(2) I∗V = IV ∗

(3) If f : W → V is linear and one-to-one, then f ∗ is onto.
(4) If f : W → V is linear and onto, then f∗ is one-to-one.
(5) If f : W → V is an isomorphism, then f∗ is an isomorphism and (f−1)∗ = (f∗)−1.
(6) The map F : GL(V ) → GL(V ∗) by F (f) = f∗ is a C∞ map.

Proof. We check each item.
Proof of item 1:

(f ◦ h)∗(α) = α ◦ f ◦ h

= h∗(α ◦ f)

= f∗ ◦ h∗(α)

Proof of item 2: I∗V (α) = α ◦ IV = α = IV ∗

Proof of item 3: The function f is one-to-one if and only if there is a function h such
that h ◦ f = IV . Hence (h ◦ f)∗ = I∗V . By 1 and 2, f∗ ◦ h∗ = IV ∗ . Since f∗ has a right
inverse, f∗ is onto.

Proof of item 4: The function f is onto if and only if there is a function h such that
f ◦ h = IV . Hence (f ◦ h)∗ = I∗V . By 1 and 2, h∗ ◦ f∗ = IV ∗ . Since f∗ has a left inverse,
f∗ is one-to-one.

Proof of item 5: Since f is one-to-one and onto, so is f ∗ by 3 and 4. Now, f ◦ f−1 = IV .
Items 1 and 2 imply, (f−1)∗ ◦ f∗ = IV ∗ , therefore (f−1)∗ = (f∗)−1

Proof of item 6: We pick charts on GL(V ) and GL(V ∗) by picking bases for V and V ∗.
Suppose {ei|i = 1 · · ·n} is a basis for V . Let e∗i ∈ V ∗, where e∗i (

∑n
j=1 bjej) = bi. Take

{e∗i |i = 1 · · ·n} as a basis for V ∗. If f is represented by the matrix M in the e basis then
f∗ is represented by MT in the e∗ basis. We check this fact.

f∗(

n
∑

i=1

aie
∗
i )(

n
∑

j=1

bjej) = (

n
∑

i=1

aie
∗
i )

n
∑

j=1

n
∑

k=1

mkjbjek

=
n
∑

i,j=1

aimijbj

= (

n
∑

i,j=1

mijaie
∗
j )(

n
∑

k=1

bkek)

So, f∗(
∑n

i=1 aie
∗
i ) =

∑n
i,j=1mijaie

∗
j and MT represents f∗ in the e∗ basis. If we consider

GL(V ) and GL(V ∗) as open sets in Rn2

via matrix coordinates, then F is M 7→MT . Since
transposing is just a permutation of the entries, the map is C∞ and in fact, linear. �

If π : E → M is a vector bundle E with fiber the vector space V , then we can then
construct E∗, a dual bundle ρ : E∗ → M . The fiber should be V ∗, but how should the
fibers be assembled? Consider the following: each point in V ∗ gives a map from V to R, so
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each point in ρ−1(x) should give a map from π−1(x) to R. A section of ρ : E∗ →M picks
out a point in each fiber and varies in a smooth manner. Therefore, we want a section of
ρ : E∗ → M to give a map to R which is linear on each fiber. Another way to think of
the above description is that a section of the dual bundle should give a bundle map of E
to ε1M , the trivial line bundle over M .

Before proceeding to the construction of the cotangent bundle, we first undertake a
discussion of the meaning of a dual of a bundle, i.e., the co in cotangent. For a vector
space the meaning is expressed in the evaluation pairing,

V ∗ × V → R

(f, v) 7→ f(v).

For vector bundles, there should be a pairing for each x ∈M and this pairing should vary
smoothly in x. Therefore there should be an evaluation pairing,

(2) Γ(E∗) × Γ(E) → Γ(ε1M )

with (f, s)(x) = (x, f(x)(s(x))). Note that this condition is guided by Remark 7.15***.

Definition 7.25***. Suppose E is a vector bundle π : E → M . The vector bundle
ρ : E∗ →M is the dual bundle to E if ρ−1(x) = (π−1(x))∗ for all x ∈M and if E∗ satisfies
the following property: There is an evaluation pairing

(2) F : Γ(E∗) × Γ(E) → Γ(ε1M )

defined by F (f, s) = f(x)(s(x)) for all x ∈M .

The pairing is the usual pairing on each fiber, but the fibers fit together smoothly so the
evaluation varies smoothly over M .

The reader should notice that the dual bundle to the trivial bundle is again a trivial
bundle since the dual to the bundle π : M × V →M is the bundle π : M × V ∗ →M .

Theorem 7.26***. Suppose E is a vector bundle π : E →M with fiber V , then there is
a dual vector bundle E∗, π : E∗ →M with fiber V ∗.

Furthermore, if U = {(Ui, ϕi) | i ∈ I} is a countable atlas for M with each Ui also a
trivializing neighborhood for E and gij : Ui ∩Uj → GL(V ) are the transition functions for
E , then fij : Ui ∩Uj → GL(V ∗) defined by fij(x) = (gji(x))

∗ for each x ∈ Ui ∩Uj forms a
set of transition functions for E∗.

Proof. The cover U , the vector space V ∗ and the functions fij satisfy Theorem 7.8*** and
so define a vector bundle E∗. To see this fact, we must check the condition the fij must
satisfy.

fik(x)fkj(x) = (gki(x))
∗(gjk(x))∗

= (gjk(x)gki(x))
∗ by properties of *, Theorem 7.24***

= (gji(x))
∗ by properties of transition functions, Proposition 7.6***

= fij(x)
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which is the required property. It remains to check the property of the pairing (2). This
condition is a local condition and so we check it in the trivializations. Suppose that
µ : π−1(Ui) → Ui × V by µ(e) = (π(e), hi(e)) and γ : π∗−1(Ui) → Ui × V ∗ by γ(e) =
(π(e), ki(e)). If s1 and s2 are sections then for x ∈ Ui the pairing (2) is

(s2(x), s1(x)) 7→ (x, ki(s2(x))(hi(s1(x)))).

Since s1, s2, hi, and ki are smooth, the pairing is also smooth, but we must check that the
pairing is well-defined. If x ∈ Uj , then fij(x)(kj(s2(x))) = g∗ji(x)(kj(s2(x))) = ki(s2(x))
and gij(x)(hj(s1(x))) = hi(s1(x)). Hence,

ki(s2(x))(hi(s1(x)) = fij(x)(kj(s2(x)))(gij(x)(hj(s1(x))))

= g∗ji(x)(kj(s2(x)))(gij(x)(hj(s1(x))))

= (kj(s2(x)))(gji(x)gij(x)(hj(s1(x))))

= kj(s2(x))(hj(s1(x)))

So the pairing is well-defined. �

Example 7.27***. The Cotangent Bundle

Suppose M is a smooth n-manifold. The dual bundle to the tangent bundle is called the
cotangent bundle. The cotangent space at a point x is (TMx)∗ which we denote T ∗Mx.
The bundle dual to the tangent bundle is (TM)∗ in the duality notation, but is usually
denoted T ∗M .

Let fij(m) = (ϕjϕ
−1
i )∗

ϕj(m). Note that if gij are the transition functions from which we

constructed the tangent bundle above, then fij(x) = (gji(x))
∗. This is the construction

specified by Theorem 7.25*** to construct the bundle dual to the tangent bundle. Call it
the cotangent bundle and denote it T ∗M .

If φ : N → M is a smooth map between smooth manifolds, then there is an induced
map φ∗φ(x) : T ∗Mφ(x) → T ∗Nx define by φ∗φ(x)(γ) = γ ◦ φ∗x.

Example 7.28***. A section of the cotangent bundle, df .

Suppose f : M → R, then let dfx = π ◦ f∗ where π : TR = R× R → R is projection in

the fiber direction, i.e., π(a ∂
∂xi

∣

∣

∣

p
) = a. Suppose that φ : M → N is a smooth map and an

onto map. Then,
φ∗(dfx) = dfx ◦ φ∗ = π ◦ f∗ ◦ φ∗ = d(f ◦ φ).

Suppose f : M → R then we will show that df defines a section of T ∗M . If x ∈ Ui,
then x 7→ d(f ◦ ϕ−1

i )ϕi(x) is a smooth map since x 7→ (f ◦ ϕ−1
i )∗ϕi(x) is smooth. In the

notation of Theorem 7.8***, dfx is represented by [x, d(f ◦ ϕ−1
i )ϕi(x), i]. We have that if

x ∈ Ui ∩ Uj , then

[x, d(f ◦ ϕ−1
i )ϕi(x), i] = [x, d(f ◦ ϕ−1

j )ϕj(x), j]

as fij(x)((d(f ◦ ϕ−1
j )ϕj(x)) = (ϕj ◦ ϕ

−1
i )∗d(f ◦ ϕ−1

j )ϕj(x) = d(f ◦ ϕ−1
j ◦ ϕj ◦ ϕ

−1
i )ϕi(x) =

d(f ◦ ϕ−1
i )ϕi(x) using the equivalence relation of Theorem 7.8***.
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Remark 7.29. Sections of the tangent and cotangent bundle are both used to generalize
types of integration.

Sections of the tangent bundle are used to integrate, solve a differential equation. Sec-
tions of the cotangent bundle are used to compute definite integrals.

Exercises

Exercise 1***. Let π : E → M be a vector bundle. Show that it has sections that are
not identically zero.

This next exercise justifies the terminology bundle equivalence.

Exercise 2***. If E1 an E2 are vector bundles over the manifold M and if E1 is bundle
equivalent to E2 by a bundle equivalence f , then E2 is bundle equivalent to E1 by f−1

which is also a bundle equivalence.
Show that bundle equivalence is an equivalence relation.

Exercise 3***. Show that every vector bundle over an interval is trivial.

Exercise 4***. Show that up to bundle equivalence, there are exactly two distinct line
bundles over the circle.

This next exercise introduces the notion of a Reimannian metric.

Exercise 5***. Suppose that E is a vector bundle π : E →M . A Riemannian metric on
E is a choice of inner product <,>x for each fiber π−1(x) such that there is an induced
map on sections

<,>: Γ(E) × Γ(E) → Γ(ε1M )

defined by < s1, s2 > (x) =< s1(x), s2(x) >x.
a. Show that every vector bundle has a Riemannian metric. This argument will require a
partition of unity.
b. Show that E is bundle equivalent to E∗.


