
HOMEWORK SOLUTIONS

Scattered Homework Solutions for Math 7550, Differential Geometry, Spring 2006. If
students have solutions written in some form of TeX that they would like to submit to me
for problems not posted, I’ll check them and, if correct, post them in this file with proper
credit given (and maybe even a little extra course credit).
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2 HOMEWORK SOLUTIONS

CHAPTER 2

MANIFOLDS

Exercises

Exercise 1***. Verify the calculations of Example 2.9a***. Show the two atlases given
for Sn in Example 2.9a*** and Example 2.9b*** give the same differential structure and
so may be merged.

Solution. We calculate the formula for the stereographic projection from the south pole,
the formula for the stereographic projection (from the north pole) given in Example
2.9a*** being derived in a completely analogous way. For (x1, . . . , xn+1) ∈ U2 = Sn \
{(0, . . . , 0,−1)} this projection is the point (y1, . . . , yn, 0) belonging to the parametrized
line t(x1, . . . , xn+1) + (1 − t)(0, . . . , 0,−1). Solving in the last coordinate yields 0 =
txn+1 − (1 − t)(−1), so that t = 1/(xn+1 + 1). Thus φ2 : U2 → Rn is given by

φ2(x1, x2, · · · , xn+1) =
1

xn+1 + 1
(x1, . . . , xn) = (

x1

1 + xn+1
, · · · ,

xn

1 + xn+1
).

One verfies by direct computation that this is equal to the formula given for φ2 given in
Example 2.9a***, namely φ2 = −φ1 ◦ (−1). The inverse φ−1

2 is calculated by starting
with (y1, . . . , yn) ∈ Rn and calculating where the parametrized line t(y1, . . . , yn, 0)+ (1−
t)(0, . . . , 0,−1) has norm 1 and is not the south pole. Thus t2(

∑n
i=1 y

2
i ) + (1 − t)2 = 1.

Expanding the second term on the left, simplifying, and solving for nonzero t (t = 0 yields
the south pole), we obtain t = 2/(

∑n
i=1 y

2
i + 1). Thus φ−1

2 : Rn → U2 is given by

φ−1
2 (y1, . . . , yn) =

(

2y1
∑n

i=1 y
2
i + 1

,
2y2

∑n
i=1 y

2
i + 1

, · · · ,
2yn

∑n
i=1 y

2
i + 1

,
2

∑n
i=1 y

2
i + 1

− 1

)

.

The rest of the assertions of Example 2.9a*** are straightforward.
We show the the chart φi,+ : Ui,+ → Rn of Example 2.9b*** defined by

φi,+(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

is compatible with the stereographic projections. Using the formula for φ−1
2 from the

previous paragraph, we easily see by direct computation that φi,+ ◦ φ−1
2 is C∞. We have

φ−1
i,+(y1, . . . , yn) = (y1, . . . , yi−1, 1 −

n
∑

i=1

y2
i , yi, . . . , yn).

Again a straightforward computation establishes that

(φ2 ◦ φ
−1
i,+)(y1, . . . , yn) =

1

yn + 1
(y1, . . . , yi−1, 1 −

n
∑

i=1

y2
i , yi, . . . , yn−1),

which is C∞ in each coordinate on the interior of the unit ball in Rn. The other compo-
sitions of hemispherical and stereographic projections follow similarly. �
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Exercise 2***. S1 × S1 is a 2-manifold, S2 × S1 is a 3-manifold,and S2 × S1 × S1 is a
4-manifold.

Of course these all follow from Proposition 2.13***. The reader should note, however,
that there is an ambiguity in S2 × S1 × S1, is it (S2 × S1) × S1 or S2 × (S1 × S1)? The
reader should show that the atlases are compatible and so these are the same manifold.

There is also a second approach that is sometimes used to define smooth functions. In
this approach, one first defines a smooth function for f : M → R only. The statement of
the next exercise would be a defintion in some textbooks, e.g., Warner and Helgason, but
for us, it is a proposition.

Exercise 3***. Show that a function f : Mm → Nn between manifolds is smooth if and
only if for all open sets U ⊂ N and all smooth functions g : U → R, g ◦ f is smooth on its
domain.

Solution. Suppose f is smooth and g is smooth then ψ ◦ f ◦ φ−1 and g ◦ ψ−1 are C∞ on
their domains for choices of charts and hence so is

g ◦ f ◦ φ−1 = (g ◦ ψ−1)(ψ ◦ f ◦ φ−1).

Therefore g ◦ f is smooth.
To prove the converse, take charts (U , φ) and (W, ψ) of M and N respectively. Now,

ψ ◦ f ◦ φ−1 is C∞ if and only if ri ◦ ψ ◦ f ◦ φ−1 is C∞ for i = 1, · · · , n. This is true by
hypothesis, since ri ◦ψ : W → R is smooth, i.e., let g run through ri ◦ψ for all charts and
i = 1, · · · , n. �

Exercise 4***. Consider R with the following three atlases:

(1) A1 = {f1}, where f1(x) = x
(2) A2 = {f2} where f2(x) = x3

(3) A3 = {f3} where f(x) = x3 + x

Which of these atlases determines the same differential structure. Which of the manifolds
are diffeomorphic?

Solution. f1 and f2 do not determine the same differentiable structure since (f1◦f
−1
2 )(x) =

x1/3, which is not differentiable at 0. f1 and f3 do determine the same differentiable
structure since (f3 ◦ f−1

1 )(x) = x + x3, which is smooth, and (f1 ◦ f−1
3 )(x) = f−1

3 (x),
which we now argue is C∞. We note first that f ′(x) = 1 + x2 > 0 for all x, so f is
strictly increasing, hence a bijection from R to R. Its derivative everywhere has nonzero
determinant (namely the value of the derivative), hence is invertible, hence by the Inverse
Function Theorem locally a C∞-map with C∞-inverse. Since being C∞ is a local property,
we conclude that f−1

3 is C∞.
The differential structures given by f1 and f2 do determine diffeomorphic manifolds.

Indeed the mapping g(x) = x1/3 is seen to be a diffeomorphism from (1) to (2) since
f2gf

−1
1 and f1gf

−1
2 are both the identity mappings, hence C∞. �

Exercise 5***. Let M , N , and Q be manifolds.

(1) Show that the projections π1 : M ×N →M and π2 : M ×N → N are smooth.
(2) Show that f : Q→M ×N is smooth iff πif is smooth for i = 1, 2.
(3) Show for b ∈ N that the inclusion x 7→ (x, b) : M →M ×N is smooth.
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solution. (1) Let (x, y) ∈ M × N , let (U, φ) be a chart into Rm for M at x, and let
(V, ψ) be a chart into Rn for N at y. Then (U × V, φ × ψ) is a chart for M × N at
(x, y), by the definition of the product differentiable structure. Now φ ◦π1 ◦ (φ×ψ)−1 is a
projection from φ(U)×ψ(V ) to φ(U) and hence is the restriction of the first projection of
Rn+m ∼= Rm ×Rn to Rm, which is C∞ since it is linear. Thus the restriction to the open
set φ(U)×ψ(V ) is C∞, Hence by Proposition 2.18*** we conclude that π1 : M ×N →M
is smooth. In a similar way one shows that π2 is smooth.

(2) If f is smooth then πi ◦ f is smooth for i = 1, 2 since by part (1) πi is smooth and
the composition of smooth maps is smooth. The converse is argued by passing to charts
in a manner analogous to the proof of part (1) and using the fact the for open subsets of
Euclidean space a function into a product is C∞ if and only if each coordinate function is.

(3) Each of the two coordinate functions is smooth, one being a constant function and
one being the idenity, and hence by (2) the given inclusion if smooth.

The following is a difficult exercise.

Exercise 6***. Prove that the set of all n × n matrices of rank k (where k < n) is a
smooth manifold. What is its dimension?

If this is too hard, then prove that the set of all n × n matrices of rank 1 is a smooth
manifold of dimension 2n− 1.
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Warmup Exercises, Chapter 2

Basic Facts: In the following exercises these basic facts witll be needed about C∞-
functions defined on open subspaces of Euclidean spaces:

(1) The composition of C∞-functions is C∞.
(2) The restriction of a C∞ to an open subset of its domain is C∞.
(3) A function is C∞ if every point in the domain has an open neighborhood on which

the function is C∞.

Exercise 1*. Suppose that {(Ui, φi) : i ∈ I} is an atlas for M . Argue that a chart (V, ψ)
is compatible with the atlas if for each x ∈ V , there exists an open set W , x ∈ W ⊆ V
and an ix ∈ I such that x ∈ Uix

and φix
◦ (ψ|W )−1 and ψ|W ◦ φ−1

ix
are C∞. (Hint: See the

proof of Theorem 2.5***.)

Exercise 2*. Suppose that {(Ui, φi) : i ∈ I} is an atlas for M , J ⊆ I and
⋃

i∈J Ui = M .
Argue that {(Ui, φ) : i ∈ I} is an atlas that generates the same differentiable structure on
M .

Exercise 3*. Prove the following corollary of Theorem 2.5*** and its proof.

Corollary. Let A be an atlas for a smooth manifold M . A chart (U, φ) belongs to the
smooth differentiable structure generated by the atlas if and only if it is compatible with
all charts in A. In particular if A is a maximal atlas (i.e., a differentiable structure), the
chart belongs to A if it is compatible with all charts in A.

Exercise 4*. (i) Let φ : U → Rn be a chart for a smooth manifold M and let V be a
nonempty open subset of U . Argue that φ|V : V → Rn is also a chart in the differentiable
structure of M .

(ii) Let {(Uj , φj) : j ∈ J} be a family of charts belonging to a differentiable structure
on M such that φi|Ui∩Uj

= φj |Ui∩Uj
for all i, j ∈ J . Argue that (

⋃

j∈J Uj , φ) is in the

differentiable structure, where φ|Uj
= φj |Uj

for each j ∈ J .

Exercise 5*. Let U be a nonempty open subset of a manifold M . Show that the charts
of M with domain contained in U form a differentiable structure on U . Show that the
restriction of any chart on M to U belongs to this differentiable structure. Show that the
restrictions to U of any atlas of charts for M yields an atlas for U .

Exercise 6*. The restriction of a smooth map f : M → N to a nonempty open subset U of
M is again smooth. In particular, if f : M → N is a diffeomorphism, then f |U : U → f(U)
is a diffeomorphism.

Exercise 7*. Show that a function from an open subset U of Rn to an open subset V of
Rm is smooth (with respect to the manifolds U and V ) if and only if it is C∞.

Exercise 8*. Verify the note after Definition 2.17***.

Exercise 9*. Prove Proposition 2.21***.
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CHAPTER 5 ADDENDUM

THE TANGENT BUNDLE

A chart vector at x for a chart (U, φ) with x ∈ U ⊆M , an n-dimensional smooth manifold,
is a pair (φ(x), v) ∈ T

(

φ(U)
)

. We define two chart vectors at x for two charts (U, φ) and
(V, ψ) to be equivalent, written (φ(x), u) ∼ (ψ(x), v), if

T (ψ ◦ φ−1)
(

(φ(x), u)
)

v :=
(

ψ(x), D(ψ ◦ φ−1)(φ(x))(u)
)

= (ψ(x), v)

⇔ D(ψ ◦ φ−1)(φ((x))(u) = v.

Exercise 2.1. Show that ∼ is an equivalence relation on the set of chart vectors at x.
Show for any chart (U, φ) with x ∈ U , assigning to u ∈ Rn the equivalence class of (φ(x), u)
defines a one-to-one correspondence between Rn and the set of equivalence classes of chart
vectors at x.

Solution. We use the last equivalence in the definition of ∼. Let (U, φ) be a chart at x,
u ∈ Rn. Then u = D(φ ◦ φ−1)(φ(x))(u) since the derivative of the identity map is the
identity map, and hence ∼ is reflexive.

For symmetry one can apply the Inverse Function Theorem, or argue directly as follows.
Assume D(ψ ◦ φ−1)(φ((x))(u) = v. Then

D(φ ◦ ψ−1)(ψ(x))(v) = D(φ ◦ ψ−1)(ψ(x))(D(ψ ◦ φ−1)(φ((x))(u))

= D(φ ◦ ψ−1 ◦ ψ ◦ φ−1)(φ(x))(u) (Chain Rule)

= D(Id)(φ(x))(u) = u.

We conclude that ∼ is symmetric.
For transitivity, assume that (U, φ), (V, ψ) and (W, θ) are charts at x, and that D(ψ ◦

φ−1)(φ((x))(u) = v and D(θ ◦ ψ−1)(ψ((x))(v) = w. Then

D(θ ◦ φ−1)(φ((x))(u) = D(θ ◦ ψ−1 ◦ ψ ◦ φ−1)(φ((x))(u)

= [D(θ ◦ ψ−1)(ψ ◦ φ−1)(φ(x)) ◦D(ψ ◦ φ−1)(φ(x))](u)

= D(θ ◦ ψ−1)(ψ(x))(v) = w,

and thus ∼ is transitive.
If for some chart (U, φ) at x, we have (φ(x), u) ∼ (φ(x), v), then D(φ ◦φ−1)φ(x)(u) = v.

Thus u = v since the derivative on the left is the identity. Hence the map γ : R → TxM
that sends u to the set of equivalence classe of (φ(x), u) is injective. Let (ψ(x), v) be any
chart vector at x. Then for u := D(φ ◦ ψ−1)(ψ(x))(v), we have (ψ(x), v) ∼ (φ(x), u).
Hence γ(u) is the equivalence class of (psi(x), v), and γ is surjective.
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Exercise 2.2. (i) Show that if (φ(x), u1) ∼ (ψ(x), v1) and (φ(x), u2) ∼ (ψ(x), v2), then
(φ(x), u1 + u2) ∼ (ψ(x), v1 + v2). Similarly show for (φ(x), u) ∼ (ψ(x), v) and r ∈ R

that (φ(x), ru) ∼ (ψ(x), rv). Hence there is a well defined vector addition and scalar
multiplication on the set of equivalence classes.
(ii) Show for any chart (U, φ) with x ∈ U , the map that sends (φ(x), u) ∈ Tφ(x)(φ(U))
to its equivalence class is a vector space isomorphism from Tφ(x)(φ(U) to the space of
equivalence classes equipped with vector addition and scalar multiplication defined in (i).


