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Chapter 1

Mathematics of Ancient Egypt

1.1 History

Egyptian mathematics dates back at least almost 4000 years ago. The main
sources about mathematics in ancient Egypt are the “Moscow Papyrus,” dat-
ing back to around 1850 B.C., and “Rhind’s Papyrus” in the British Museum,
which was copied from the original in 1650 B.C. by someone named Ahmose.
Egyptian mathematics apparently arose from various practical concerns such
as surveying of fields after Nile flooding, construction projects such as the
pyramids, the making of calendars, and various accounting activities and was
practiced by scribes and perhaps priests.

The two papyri contain various specific elementary mathematical prob-
lems (for example: how many bricks does it take to build a ramp of certain
dimensions?) and their solutions (often worked out). Although the prob-
lems often go well beyond practical concerns, we find no general methods
of solutions described and nothing that could be considered theoretical, in
particular theoretical justifications or proofs.

The Egyptians used a base 10 grouping system (with symbols representing
various powers of 10 grouped together), but the scribes also developed a
ciphered system (with symbols for all numbers of the form k · 10n for 1 ≤
k ≤ 9), which made writing of numbers much less cumbersome. They used
fractions which they curiously insisted on representing as sums of integer
reciprocals, i.e., fractions with numerator 1 (for example, Ahmose writes
2

45
= 1

30
+ 1

90
). The methods used to rewrite fractions in this form are not

clearly understood.
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Adding and subtracting are easy in grouping systems. The Egyptians had
a multiplication algorithm that reduced multiplication to repeated doubling
of one muliplicand and a final addition. They used a modified version of this
algorithm for division.

The Egyptian papyri present various word problems that involve solving
linear equations and various methods for solution, including one similar to
that we use today. Another technique was that of false position, where a
convenient but incorrect answer is assumed and then appropriated adjusted
to obtain the correct one. The solutions are much more challenging since no
modern algebraic symbolism is used, only descriptions in words of what is
being done, and since the Egyptian treatment of fractions was so cumber-
some.

In geometry the papyri demonstrate a knowledge of basic area and volume
formulas. One interesting formula is that used for the area of a circle, given
the diameter: A = [(8/9)d]2 (this may be viewed as an early form of “squaring
the circle,” since the area of the circle is approximately the square of 8/9 of
the diameter).The most impressive formula obtained is that for the volume
of a truncated pyramid with square base of side a and square top of side b:
V = 1

3
h(a2 + ab + b2). It remains unknown how the Egyptians found this

formula.
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1.2 Problems

1. Rewrite the following numbers in hieroglyphics and add:
(i) 234 + 765 (ii) 4, 555 + 5, 648 (iii) 36, 486 + 9, 018

2. The “doubling” method of Egyptian multiplication requires writing any
whole number as a sum of powers of two. How do you know that this can
be done for any number? Use the reverse remainder algorithm to write the
following numbers as sums of powers of two:
(i) 73 (ii) 52 (iii) 98 (iv) 151

3. Multiply using the Egyptian method of doubling:
(i) 19 × 29 (ii) 25 × 73 (iii) 71 × 211

4. The validity of the Egyptian multiplication algorithm depends on the
ability to write a number as a sum of powers of 2 and what basic arithmetic
law?

5. The Egyptian multiplication algorithm can also be used with negative
powers of 2. Use this idea to show the product of 1 + 1

2
+ 1

4
by 1

14
is equal to

1

8
(Problem 12 of the Rhind Papyrus).

6. Perform the following divisions using the Egyptian method:
(i) 96 ÷ 8 (ii) 805 ÷ 35 (iii) 84 ÷ 5

7. The Egyptians wrote their fractions as sums of distinct unit fractions.
Historians are unsure about how the Egyptians reduced fractions to this
form. One method for doing this that has been referred to as the splitting

method depends on the identity

1

n
=

1

n + 1
+

1

n(n + 1)
.

For example,
2

19
=

1

19
+

1

19
=

1

19
+

1

20
+

1

380
.

For fractions with larger numerators, the splitting may need to be repeated.
(i) Verify the algebraic identity behind the splitting method.
(ii) Show that for any positive integers p, q,

1

pq
=

1

p(p + q)
+

1

q(p + q)
.

(ii) Represent 3

7
and 4

15
as sums of distinct unit fractions by using (a) the

splitting method and (b) Fibonacci’s method.
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8. The Method of False Position is a guess method for solving linear equa-
tions. For example, a number plus its double plus its third equals 20. What is
the number? We make some initial guess, typically one that is easy to evalu-
ate. If we guess 12, then we obtain 12+2(12)+(12/3) = 12+24+4 = 40. We
then form the fraction (desired answer)/(answer from guess)= 20/40 = 1/2
and multiply it by our first guess (1/2) × 12 = 6 to get the desired answer.
(i) Use the method of false position to solve

3x −
x

4
+

3

8
x = 10

(ii) Problem 32 of the Rhind Papyrus states that a quantity, its third, and
its fourth added together yield 2. Use the method of false position to find
the quantity. Express your answer in Egyptian fashion.

9. The Moscow and Rhind Papyri give what are probably the earliest remain-
ing records of area and volume formulas. Problem 41 of the Rhind Papyrus
asks for the volume of grain that can be stored in a cylindrical granary of di-
ameter 9 cubits and height 10 cubits. Solve the problem using the Egyptian
value π = 4(8/9)2.

10. Problem 58 of the Rhind Papyrus asks for the “seked” of a pyramid (with
square base) if it is 931

3
cubits high and the side of its base is 140 cubits.

(Explanation: The seked of an isosceles triangle is given by s ÷ 2h where s
is the length of the base and h is the height or altitude on the base. For the
pyramid in question the seked would be the seked of a isosceles slice of the
pyramid with base connecting the midpoints of opposing sides.)
(i) Verify that the seked of an isosceles triangle equals the cotangent of one
of the base angles.
(ii) Solve Problem 58. How does this compare to the slope of a lateral face of
the pyramid? (The seked in this problem has been associated with the slope
of the lateral faces of the Second Pyramid at Gizeh.)

11. The Moscow Papyrus (1850 B.C.) shows that the Egyptians were familiar
with the correct formula for the volume of a truncated pyramid:

V =
h

3
(a2 + ab + b2),

where h is the altitude, a is the length of the square base, and b is the length
of the square top.
(i) Solve Problem 14, the volume of a truncated pyramid of vertical height
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6, a side of length 4 for the base, and a side of length 2 on the top.
(ii) Show that the Egyptian formula is equivalent to one known to the Baby-
lonians:

V = h

[

(a + b

2

)2

+
1

3

(a − b

2

)2

]

.
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Chapter 2

Mathematics of Ancient

Babylon

2.1 History

The Babylonians lived in Mesopotamia (currently southern Iraq) from about
2000 B.C. until around 500 B.C, having displaced the earlier Sumerians and
Akkadians. They exhibited developed systems of agriculture, government,
laws, religion, achooling, and city communities, among others. They also
possessed a substantial body of mathematical knowledge, well before most
other civilizations. Their writings have been passed down to us on hundreds
of clay tablets, on which they wrote in cuneiform (wedge-shaped) symbols.
Most of the Babylonian mathematics that has come down to us on these
tablets is from the period 1800-1600 B.C.

Some important characteristics of Old Babylonian mathematics stand
out. Almost always, the goal of a problem was the computation of a number.
Students were not asked to produce a figure, nor give what we would call
a proof. Because of this emphasis on numeric computation based on proce-
dures, Babylonian mathematics might be called algorithmic, as opposed to
the geometric focus of the Greeks and their deductive, axiomatic approach.
But the Babylonians never stated a general procedure; instead they gave
worked examples. The students would work through lots of examples until
they could do the problem with any set of initial values.

The Babylonians were strong believers in word problems. Apart from
a few procedure texts for finding things like square roots, most Old Baby-
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lonian problems were couched in a language of measurement of everyday
objects and activities. Students had to find lengths of canals dug, weights of
stones, lengths of broken reeds, areas of fields, numbers of bricks used in a
construction, and so on. Despite this focus, Babylonian mathematics prob-
lems were often artificial and had little to do with the real world. However,
many of the problems used realistic coefficients and settings, especially those
concerned with defense construction and economic activities.

Many of the unearthed mathematical tablets of the Babylonians consist of
arithmetical tables of squares, square roots, cube roots, reciprocals, and some
powers. These tables, which are easier to translate than more complicated
texts, were an important tool in their attainment of an advanced level of
calculation. The tables make it clear that the Babylonians used a base-60 or
sexagesimal system, not the usual base-10 system. Part of that system has
been preserved even to the present in the way we measure time (and latitude
and longitude): sixty minutes to each hour, sixty seconds to each minute,
24 hours in the day. For their base-60 system, the Babylonians needed units
from 1 to 59, which they made by grouping the two cuneiform strokes ▽ = 1
and ⊳ = 10. The number system and associated methods of calculation were
complicated enough they were generally reserved for the priesthood. On the
other hand, 60 has a distinct advantage over 10, because it has many more
divisors, which led the Babylonians generally to avoid fractions and work
with sexagesimal decimal representation.

The Babylonians used the formulas

ab = [(a + b)2 − a2 − b2]/2 and ab = [(a + b)2 − (a − b)2]/4

to make multiplication easier. These show that a table of squares is all that
is necessary to multiply numbers, simply taking the difference of the two or
three squares that were looked up in the table then taking a half or a half
twice of the answer.

The Babylonians did not have an algorithm for long division. Instead
they based their method on the fact that

a/b = a × (1/b)

so all that was necessary was a table of reciprocals. We still have their
reciprocal tables going up to the reciprocals of numbers up to several billion.

The Babylonians were adept at linear and quadratic equation. The Baby-
lonian method for solving quadratics was essentially based on completing the
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square. The method(s) are not as clean as the modern quadratic formula,
because equations were set in a form for which there was a positive solution.
Negative solutions (indeed negative numbers) would not be allowed until the
16th century CE. The method of writing a problem was verbal and did not
include mathematical symbols. As such problems have a rather intuitive
feel. Anyone could understand the problem, but without the proper tools,
the solution would be impossibly difficult. Perhaps this rendered a sense of
the mystic to the mathematician. Consider this example:

I added twice the side to the square; the result is 2,51,60. What
is the side?

In modern terms we have the simple quadratic x2 +2x = 10300. The student
would then follow his “procedure” for quadratics to find the solution.

For geometric objects, problems typically involved lengths of sides or
diagonals, or determination of area or volume. The Babylonians had no
measurement of angle, which to us is such a basic part of geometry. Angles
were a later development. Some tablets do have figures drawn on them, and
there are surviving problems treating all the standard shapes such as squares,
rectangles, triangles, trapezoids, circles, and so on. Some of the problems
are sophisticated. Solid geometry is dominated by bricks and ramps, but
cylinders and truncated cones and pyramids do make an appearance. They
estimated π and were aware of the Pythagorean theorem, as is shown by the
famous Plimpton 322 tablet, which appears to be a table of Pythagorean
triples in a variant form, and by the following tablet inscription:

4 is the length and 5 the diagonal. What is the breadth? Its size
is not known. 4 times 4 is 16. 5 times 5 is 25. You take 16 from
25 and there remains 9. What times what shall I take in order to
get 9? 3 times 3 is 9. 3 is the breadth.

This document shows that although the Babylonians had a good understand-
ing of how to apply the theorem, they tended to think algorithmically; that
is, in terms of a sequence of steps that could always be followed to arrive
at the answer to a problem. They did not attempt any formal proof of the
statement; that would not come until much later, when Pythagoras offered
a proof in the 6th century B.C.

The level of mathematical skill displayed in Old Babylonian mathematics
goes considerably beyond that required for day-to-day usage, even as a scribe.
Indeed there are some examples of virtuoso work.
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2.2 Problems

1. (a) Express 10,000 in Babylonian cuneiform notation.
(b) We normally write Babylonian numbers in sexagesimal notation with the
individual blocks written as Hindu-Arabic numbers: 2, 15, 45; 12 = 2× 602 +
15 × 60 + 45 + 12 × 60−1 = 814512

60
. Rewrite ⊳▽ ⊳ ⊳▽▽ ⊳ ⊳ ⊳ ▽ in the

usual sexagesimal way of expressing Babylonian numbers and in our base 10
system.

2. (a) Express the fractions 1

6
, 5

12
, 1

9
in sexagesimal notation.

(b) Express the reciprocals of 40 and 64 in sexagesimal notation.

3. What is the condition on an integer for it to be a regular sexagesimal,
that is, its reciprocal is a finite sexagesimal decimal?

4. Convert the Babylonian approximation 1; 24, 51, 10 for
√

2 to decimals
and determine the number of decimal places that it is correct.

5. Given 112 = 121, 122 = 144, 132 = 169, 142 = 196, 152 = 225, 162 = 256,
172 = 289, 182 = 324, 192 = 361, 202 = 40, 302 = 900, 402 = 1600,
502 = 2500, use the Babylonian method of squares to find 6 × 13, 13 × 27,
and 34 × 16.

6. Multiply 12, 3; 45, 6 by 60. What is a simple rule for multiplying any
sexagesimal number by 60?

7. In their astronomical calculations, the Babylonians were interested in
chord calculations, such as the following one taken from a Babylonian tablet.
Given that the circumference of a circle is 60 units and the length of the
radius through the center of a chord that lies between the chord and the
circle is 2 units, what is the length of the chord? Assume π = 3. (Hint: Use
the Pythagorean theorem in the top triangle.)

?

2

r

C=60
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8. The most famous of the Babylonian tablets is Plimpton 322, which appears
to be a table of Pythagorean triples of integers, integers such that x2+y2 = d2.
Two of the columns in the table give values for x and d, and the third gives
(x/y)2, which values may have been used in astronomical calculations. The
Pythagorean triples found are quite large, so the Babylonians undoubtedly
had some method for generating them.
(a) Given the values x = 319 and d = 481, find y and show that (x/y)2 agrees
with the entry 0.7851929 in the Plimpton table.
(b) For n < m, verify algebraically that (m− n)2 + 4mn = (m + n)2. Hence
if 4mn is a perfect square, a Pythagorean triple is generated. Fine the triple
for m = 81 and n = 16. The x and d values appear in Plimpton 322.

9. The Babylonian solution x =
√

c + b2/4 − b/2 for the quadratic equation
x2 + bx = c, where b, c > 0, suggests that it arose from the ancient geometric
method of “completing the square.” The method of solution consisted of first
forming the rectangle of sides x and x + b so that the area was x(x + b) =
x2 + bx = c.

x

x

x

b

A = x(x + b)

x

x

x

x

b/2

b/2

b/2
A = (x + b/2)2 − (b/2)2

One then split the right rectangle (with sides x and b) and pasted the right
most half to the bottom. One then obtained a square of side x + b/2, except
that the bottom right corner, a square of side b/2 was missing. Such figures
are known as gnomons (squares with square corners missing). By taking the
area of the small square from the larger, we obtain an area of (x + b/2)2 −
(b/2)2. Since the gnomon is a rearrangement of the original rectangle, it must
also have area c = (x + b/2)2 − (b/2)2. Thus (x + b/2)2 = c + (b/2)2. Taking
square roots of both sides and moving b/2 to the right gives the Babylonian
formula.
(a) Solve the equation x2 + bx = c algebraically by algebraically completing
the square of the left-hand side, and then solving for x.
(b) Modify the Babylonian process to find the Babylonia formula for the
solution of x2 − bx = c.
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Chapter 3

Euclid’s Elements

3.1 Problems

A very useful web reference for Euclid’s Elements is the web version prepared
by D. E. Joyce at the Clark University site.

1. Euclid’s notion of “equal” is equality of some geometric measurement
(such as length or area). It corresponds in modern math to what we
now call an equivalence relation. (What we would call “equality” Euclid
calls “coinciding.”)

Suppose that we use ∼= for the relation “equal” in Euclid’s Common
Notions. Define what it means for ∼= to be an equivalence relation and
show that Common Notions 1 and 4 may be interpreted to show that ∼=
is an equivalence relation. In his 1899 reformulation of Euclid’s geom-
etry, Hilbert defined equality of length by postulating an equivalence
relation on line segments.

2. Give Pappus’ proof that the base angles of an isosceles triangle are
equal (Proposition I.5) (Hint: show that flipping the triangle gives a
congruence of the triangle with itself.)

3. The assertion that if two lines cut one another, then they make vertical
angles that are equal (Proposition I.15) has been attributed to Thales.
Prove it by appealing to Proposition I.13, which says that if a ray is
drawn from a point on a line, then the supplementary angles that are
formed equal two right triangles (180◦).
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4. Show that the angles of a triangle sum to two right angles (180◦) by
constructing a line through a vertex parallel to the opposite side.

5. Prove that if the opposite sides of a quadrilateral are equal and parallel,
then the quadrilateral is a parallelogram (Proposition I.33). (Hint:
Draw a diagonal and prove the triangles are congruent.)

6. Illustrate with a square of side having length a + b that (a + b)2 =
a2 + 2ab + b2 (see Proposition II-4).

7. Describe how to carry out the following constructions:

(i) the perpendicular bisector of a line segment;

(ii) the tangent to a circle.

How does Euclid define a tangent line to a circle? How does that differ
from the way we define it in calculus? Show that your construction in
part (ii) satisfies Euclid’s definition.

8. Given a line segment of length a, describe the construction for obtaining
x such that a : x = x : (a − x) (Proposition II-11). Show that a : x =√

5 + 1 : 2, the golden ratio.

9. Show that Proposition II-13 is equivalent to the law of cosines for an
acute-angled triangle: In acute-angled triangles the square on the side
opposite the acute angle is less than the sum of the squares on the sides
containing the acute angle by twice the rectangle contained by one of
the sides about the acute angle, namely that on which the perpendicular
falls, and the straight line cut off within by the perpendicular towards
the acute angle.

10. Describe the construction for inscribing a regular hexagon in a circle.
Explain why it works.

11. Explain using the sum of angles at a vertex why there can be at most
5 regular polyhedra.
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