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OPTIMAL LOWER BOUNDS ON LOCAL STRESS INSIDE RANDOM
MEDIA ∗

BACIM ALALI† AND ROBERT LIPTON‡

Abstract. A methodology is presented for bounding the higher Lp norms, 2 ≤ p ≤ ∞, of
the local stress inside random media. We present optimal lower bounds that are given in terms of
the applied loading and volume fractions for random two phase composites. These bounds provide
a means to measure load transfer across length scales relating the excursions of the local fields to
applied loads. These results deliver tight upper bounds on the macroscopic strength domains for
statistically defined heterogeneous media.
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1. Introduction. Many structures are hierarchical in nature and are made up
of substructures distributed across several length scales. Examples include aircraft
wings made from fiber reinforced laminates, bridges made from steel reinforced con-
crete, and naturally occurring structures like bone. The applied load can be greatly
amplified by the local microstructure and can result in local stress concentrations, see
for example [21]. The presence of large local stress precedes the appearance of non-
linear phenomena such as fracture and yielding [2]. Thus it is crucial to quantify load
transfer between length scales when considering failure initiation inside multi-scale
heterogeneous media. Any improvement in our understanding of failure initiation
inside multi-phase media has the potential to reduce the high cost involved in the
development of advanced composite architectures for aerospace and infrastructure
[4]. In this paper we present a new method for quantifying load transfer between
length scales when the substructure or microstructure is known only in a statistical
sense. New tools are provided for teasing out relationships that connect the local
stress field to applied macroscopic loads. These relationships provide explicit criteria
on the applied loads that are necessary for failure initiation inside statistically defined
heterogeneous media.

Over the last century major strides have been made in the characterization of
effective constitutive laws relating average fluxes and gradients inside heterogeneous
media see for example [13, 31, 32, 35, 38, 46]. However the knowledge of effective
properties alone are not sufficient for the quantitative description of load transfer
across length scales. Suitable mathematical quantities need to be invoked that are
sensitive to the presence of zones of high field values inside heterogeneous media.
Such quantities include the Lp norms of the deviatoric and hydrostatic components
of the local stress and strain. Higher Lp norms of local fields are often used to
describe phenomena related to failure initiation inside heterogeneous media. In the
applications the L∞ norm of the local stress is used to describe the strength domain for
both elastic–perfectly plastic, periodic fiber reinforced composites [9] and for random,
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rigid–perfectly plastic composites and polycrystals see for example [45], [43], [37], [42],
[41], [7], [8], [22], [36]. For p < ∞ the Lp norm of the local Von Mises stress is used
in the description of failure probabilities see [2], [21], and [20].

This paper examines the local stress fields inside statistically homogeneous two
phase random elastic media. The analysis focuses on the linear elastic regime. Here
the random medium is characterized by a spatially varying elasticity tensor that
provides the local constitutive law relating the local stress and strain. Most often one
does not have access to the underlying probability measure describing the random
elasticity tensor field and instead one must make use of partial statistical information
describing the random microstructure. In this paper we address the case when only
the volume fractions of the two materials are known. New methods are presented
that deliver explicit lower bounds on the Lp norms of the local stress inside two phase
heterogeneous random media. The bounds are given in terms of the applied loads,
volume fractions, and elastic constants of the two materials. Several new lower bounds
are presented for a ladder of progressively more complicated macroscopic load cases
and are valid for the full range 2 ≤ p ≤ ∞. These bounds are shown to be optimal and
provide a means to measure load transfer across length scales relating the excursions
of the local stress to the applied macroscopic loading. Here we have focused on lower
bounds since volume constraints alone do not preclude the existence of microstructures
with rough interfaces for which the Lp norms of local fields are divergent see [33], [5],
and also [23]. The methods developed here can be used to obtain optimal lower
bounds for local strain fields inside random heterogeneous media [1].

The results presented in this paper provide new quantitative tools for the study
of failure initiation inside random heterogeneous media. For a given realization of the
random medium, the theory of failure initiation posits that failure is initiated when
certain rotational invariants of the local elastic stress exceed threshold values [21].
An example is an elastic–perfectly plastic material. Here the material deforms elas-
tically up to some threshold value and then yields undergoing plastic, or irreversible
deformation [18]. Typical stress invariants used to describe failure include the local
hydrostatic stress component σH which measures the hydrostatic force acting inside
the material and the Von Mises equivalent stress σV which measures the local shear-
ing forces acting inside a material [21]. Various combinations of these two invariants
are considered in the strength of composites literature see, [3] and [47].

To fix ideas we introduce the macroscopic strength domain associated with the
local Von Mises stress σV for two phase statistically homogeneous random elastic
media. Here we suppose that only the volume fractions θ1 and θ2 of the two elastic
materials are known. The macroscopic strength domain KSafe is defined to be the
set of applied constant stresses σ such that σV lies below the failure threshold inside
each component material almost surely for every microstructure realization of the
random medium with prescribed volume fractions θ1 and θ2. An upper bound on the
macroscopic strength domain is defined to be the set K of constant stresses such that
if σ lies outside K then σV has attained the threshold on some subset inside one of
the component materials for every microstructure composed of materials one and two
with prescribed volume fractions θ1 and θ2, so

KSafe ⊂ K. (1.1)

In Section 4 we apply the lower bounds on local fields to obtain explicit, tight upper
bounds on the macroscopic strength domains for statistically homogeneous random
media. These results provide new optimal upper bounds on the strength domain for
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some prototypical examples of elastic–perfectly plastic random heterogeneous media.
In this context we point out the substantial mathematical literature and associated
theory characterizing the strength domains of heterogeneous media made from rigid-
perfectly plastic materials, see for example [45], [43], [37], [42], [41], [7], [8], [22], [36].
Unlike an elastic–perfectly plastic material a rigid–perfectly plastic material does not
deform until yield occurs. For rigid–perfectly plastic materials the local stress satisfies
only the equilibrium equation divσ = 0 until the yield limit is reached. This is distinct
from the elastic–perfectly plastic model where the stress also satisfies a constitutive
law relating it to the local elastic strain.

Earlier work provides optimal lower bounds on local fields for random media
subjected to applied constant hydrostatic stress and strain and for applied constant
electric fields see, [27] and [28], and [26]. Those efforts deliver optimal lower bounds on
the Lp norms for the hydrostatic components of local stress and strain fields as well as
the magnitude of the local electric field for all p in the range 2 ≤ p ≤ ∞. Other work
examines the stress field around a single simply connected stiff inclusion subjected
to a remote constant stress at infinity [49] and provides optimal lower bounds for
the supremum of the maximum principal stress. The work presented in [12] provides
an optimal lower bound on the supremum of the maximum principal stress for two-
dimensional periodic composites consisting of a single simply connected stiff inclusion
in the period cell. The recent work of [16] builds on the earlier work of [27, 28] and
develops new lower bounds on the Lp norm of the local stress and strain fields inside
statistically isotropic two-phase elastic composites. However to date those bounds
have been shown to be optimal for p = 2 see, [16]. Their optimality for p > 2 remains
to be seen. Optimal upper and lower bounds on the L2 norm of local gradient fields
are established using integral representation formulas in [29].

The paper is organized as follows. In the next section we present the elastic
boundary value problem for heterogeneous media. Section 3 lists lower bounds for
a ladder of load cases of increasing generality. The microstructures that support
local fields that attain the lower bounds are introduced and discussed in this section.
Upper bounds on the strength domains for random media are displayed in Section 4.
The lower bounds on the local stress are derived in Section 5. Their attainability is
demonstrated in Section 6.

The hydrostatic and deviatoric components of local stress fields are defined below
for future reference. We denote generic stress or strain tensor fields by ψ(x) and η(x).
Contractions of two such fields ψ and η are defined by ψ : η = ψijηij and |ψ|2 = ψ : ψ,
where repeated indicies indicate summation. Products of fourth order tensors C and
stress or strain tensors ψ are written as Cψ and are given by [Cψ]ij = Cijklψkl;
and products of stresses or strains η with vectors v are given by [ηv]i = ηijvj . The
fourth order identity map on the space of stresses or strains is denoted by I and
Iijkl = 1/2(δikδjl + δilδjk). The projection onto the hydrostatic part of ψ(x) is
denoted by ΠH and is given explicitly by

ΠH
ijkl =

1

d
δijδkl andΠHψ(x) =

trψ(x)

d
I. (1.2)

The projection onto the deviatoric part of ψ(x) is denoted by ΠD and I = ΠH +ΠD

with ΠDΠH = ΠHΠD = 0. When ψ(x) represents the local stress tensor, the
well known Von Mises equivalent stress is given by |ΠDψ(x)|. For completeness we
introduce the following notation. The rank one matrix formed by taking the outer
product of two unit vectors a and b is denoted by a⊗b with elements (a⊗b)ij = aibj .



4 B. ALALI AND R. LIPTON

The symmetric part of this matrix is denoted by a � b with elements (a � b)ij =
(aibj + ajbi)/2 .

2. Stress and strain fields inside stationary random heterogeneous me-
dia. We present the equilibrium equations and constitutive laws used to describe
the behavior of local stress and strain fields inside statistically homogeneous ran-
dom heterogeneous materials, [6], [19], [39], [46], see also [32]. Every realization ω of
the heterogeneous medium occupies Rd, d = 2, 3 and is composed of two elastically
isotropic materials with elasticity tensors denoted by C1 and C2. The bulk and shear
moduli of material one and two are denoted by κ1 and µ1, and κ2 and µ2 respectively.
The isotropic elasticity tensor associated with each component material is given by

Ci = 2µiΠ
D + dκiΠ

H , for i = 1, 2, (2.1)

where d = 2 for planar elastic problems and d = 3 for the three dimensional problem.
Each realization of the random medium is specified by the indicator functions

of phase one and two denoted by χ1(x, ω) and χ2(x, ω). For a given realization
χ1(x, ω) takes the value 1 in phase one and zero outside and χ2(x, ω) = 1− χ1(x, ω).
The elastic tensor associated with the two phase medium is denoted by C(x, ω) and
C(x, ω) = χ1(x, ω)C1 + χ2(x, ω)C2. Here the index ω belongs to the sample space
Ω and the associated probability measure P is defined over Ω. For the class of sta-
tistically homogeneous or strictly spatially stationary and ergodic random media the
joint distribution of the sets of indicator functions (for n = 1, 2, . . .)

χ1(x1, ω), χ1(x2, ω), χ1(x3, ω), . . . , χ1(xn, ω) (2.2)

are invariant under all translations and the ensemble averages of χ1 coincide with
the mean value 〈χ1〉 defined as the limit of volume averages taken over progressively
larger volumes [6], [19], [46]. The volume (area) fractions of phase one and two are
given by the mean values;

θ1 = 〈χ1〉 and θ2 = 〈χ2〉 (2.3)

and θ1 + θ2 = 1.
In what follows we suppress the variable ω when describing local stress and strain

fields associated with a fixed microstructure realization. A constant “macroscopic”
stress σ is imposed on the heterogeneous material. The local stress is expressed as
the sum of a stationary, ergodic, mean zero fluctuation σ̂ and σ, i.e., σ(x) = σ+ σ̂(x),
with 〈σ̂〉 = 0. The equation of elastic equilibrium inside each phase is given by

div σ = 0. (2.4)

The local elastic strain ε(x) is related to the local stress through the constitutive law

σ(x) = C(x)ε(x) (2.5)

and the local elastic strain field ε(x) is written in the form

ε(x) = ε+ ε̂(x) (2.6)

where ε̂ is a stationary, ergodic, mean zero strain fluctuation. The strain fluctuation
is given in terms of the displacement field û with ε̂ij(x) = (∂j ûi(x)+∂iûj(x))/2. The
traction at an interface with unit normal vector n pointing into material 2 is denoted
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by the product σn and is the vector with components given by [σn]i = σijnj . Perfect
contact between the component materials is assumed, thus both the displacement û
and traction σn are continuous across the two phase interface, i.e.,

û|1 = û|2 , (2.7)

σ|1n = σ|2n. (2.8)

Here the subscripts indicate the side of the interface that the displacement and traction
fields are evaluated on. The existence and uniqueness of the required stationary,
ergodic stress and strain fluctuations σ̂, ε̂ is well known and can be found in, [6], [19],
and [46].

The effective “macroscopic” constitutive law for the random heterogeneous medium
is given by the constant effective elasticity tensor Ce [6], [19], [32], [46], relating the
average imposed macroscopic stress σ to the average strain ε,

σij = Ceijklεkl. (2.9)

In what follows bounds are derived on the moments of the local stress σ defined on
Rd. Here the moments of a field q are defined to be 〈|q|r〉1/r. For future reference we
remind the reader that limr→∞〈|q|r〉1/r is the same as the ‖q‖∞ norm more commonly
defined as the essential supremum of q, see [25].

3. Optimal lower bounds on the local stress inside random composites.
In this section we list new optimal lower bounds on the local stress for a ladder of
progressively more general sets of imposed macroscopic stress. As we progress to
more general load cases we will apply additional hypotheses on the shear and bulk
moduli of the constituent materials. In this section we display lower bounds for the
following applied macroscopic load cases: 1) lower bounds on the full local stress
for imposed hydrostatic stresses, 2) lower bounds on the full local stress inside the
material with larger shear modulus for elastic problems with imposed shear stresses,
3) lower bounds on the full local stress for µ1 = µ2, that are seen to be optimal for a
special class of imposed macroscopic stresses, 4) lower bounds on the local Von Mises
equivalent stress that are optimal for a similar special class of imposed macroscopic
stress fields, and 5) lower bounds on the hydrostatic and deviatoric components of the
local stress for the full set of imposed macroscopic stresses subject to the hypotheses
µ1 = µ2 or κ1 = κ2 respectively. These lower bounds are derived in Section 5 and
their attainability is demonstrated in Section 6.

In what follows will adopt the notation κ+ = max{κ1, κ2}, µ+ = max{µ1, µ2},
κ− = min{κ1, κ2}, and µ− = min{µ1, µ2}.

3.1. Hydrostatic applied stress. In this section we consider imposed macro-
scopic stresses that are hydrostatic, i.e., of the form σ = pI where p is a constant and
I is the d × d identity matrix. Here it is assumed that the elastic materials inside
the heterogeneous medium are well-ordered i.e., (µ1 −µ2)(κ1 −κ2) > 0. Without loss
of generality we will suppose in this section that µ1 > µ2 and κ1 > κ2. We present
lower bounds that are optimal for all imposed hydrostatic stresses. The configura-
tions that attain the bounds are given by the Hashin-Shtrikman coated sphere and
(cylinder) assemblages [15]. We describe the coated sphere assemblage made from a
core of material one with a coating of material two and note that the coated cylinder
assemblage is constructed similarly. We first fill R3 with an assemblage of spheres
with sizes ranging down to the infinitesimal. Inside each sphere one places a smaller
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concentric sphere filled with “core” material one and the surrounding coating is filled
with material two. The volume fractions of material one and two are taken to be the
same for all of the coated spheres.

We begin by presenting optimal lower bounds on the moments of the local stress
inside material one.

Proposition 3.1. Optimal lower bounds on the local stress inside ma-
terial one.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for an imposed hydrostatic macroscopic stress σ = pI
the local stress inside material one satisfies

〈χ1|σ(x)|r〉1/r ≥ θ
1/r
1

√
d(κ1κ2 + 2d−1

d µ2κ1)

κ1κ2 + 2d−1
d µ2 (θ1κ1 + θ2κ2)

|p| , for 2 ≤ r ≤ ∞. (3.1)

Moreover for d = 2(3) and for every r in 2 ≤ r ≤ ∞ the lower bound is attained by
the local stress inside the coated cylinder (sphere) assemblage with core of material
one and coating of material two.

A similar result holds for the local stress inside material two:
Proposition 3.2. Optimal lower bounds on the local stress inside ma-

terial two.
Consider any heterogeneous medium with volume (area) fraction of materials one

and two given by θ1 and θ2, then for an imposed hydrostatic macroscopic stress σ = pI
the local stress inside material two satisfies

〈χ2|σ(x)|r〉1/r ≥ θ
1/r
2

√
d(κ1κ2 + 2d−1

d µ1κ2)

κ1κ2 + 2d−1
d µ1 (θ1κ1 + θ2κ2)

|p| , for 2 ≤ r ≤ ∞. (3.2)

Moreover for d = 2(3) and for every r in 2 ≤ r ≤ ∞ the lower bound is attained by
the local stress inside the coated cylinder (sphere) assemblage with core of material
two and coating of material one.

The optimal lower bound on the L∞ norm of the magnitude of the local stress
inside a random composite is given by:

Proposition 3.3. Optimal lower bounds on the L∞ norm of the local
stress.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for an imposed hydrostatic macroscopic stress σ = pI
the stress field inside the composite satisfies

‖|σ(x)|‖∞ ≥
√
d(κ1κ2 + 2d−1

d µ2κ1)

κ1κ2 + 2d−1
d µ2 (θ1κ1 + θ2κ2)

|p| . (3.3)

Moreover for d = 2(3) the lower bound is attained by the local stress inside the coated
cylinder (sphere) assemblage with core of material one and coating of material two.

Arguments similar to those provided in Section 5 deliver lower bounds on the
local stress field when the two materials are not well ordered, i.e., µ1 > µ2 and
κ1 < κ2. However explicit calculation shows that the stress fields inside the coated
sphere assemblage do not saturate the lower bounds for any combination of core and
coating material when the materials are not well ordered.
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3.2. Deviatoric applied stress. In this section we consider imposed macro-
scopic stresses that are purely deviatoric, i.e., σ = σD, where ΠHσD = 0. For two
dimensional elastic problems any deviatoric stress tensor can be expressed as the sym-
metric tensor product of two orthogonal unit vectors a and b, i.e., σD = s(a�b). Here
s is an arbitrary scalar. In three dimensions this type of stress tensor is referred to
as a pure shear stress. For two-dimensional elastic problems we present lower bounds
on the local stress and lower bounds on the local Von Mises equivalent stress that are
optimal for all applied deviatoric stresses and for three dimensional problems we show
that the lower bounds are optimal for any imposed pure shear stress. The bounds are
attained by simple laminates made by alternately layering material one with material
two in the proportions θ1 and θ2 respectively. The direction normal to the layers is
denoted by n. The optimal choice of layer direction is given by n = a or n = b.

For a deviatoric macroscopic stress, we first present optimal lower bounds on the
local stress inside the component material with the larger shear modulus. Here we
denote the volume (area) fraction and indicator function of the material with the
larger shear modulus by θ+ and χ+ respectively.

Proposition 3.4. Optimal lower bounds on the moments of the local
stress inside the phase with larger shear modulus.

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by θ1 and θ2, then for an imposed deviatoric macroscopic stress σD the
stress field inside the material with larger shear modulus satisfies

〈χ+|σ(x)|r〉1/r ≥ θ
1/r
+

∣

∣σD
∣

∣ , for 2 ≤ r ≤ ∞. (3.4)

For d = 2, 3 and for every 2 ≤ r ≤ ∞ when σD = s(a � b) then the lower bound
(3.4) is attained by a simple laminate. The vector normal to the layer interface for
the optimal laminate is chosen according to n = a or n = b.

The optimal lower bound on the L∞ norm of the magnitude of the local stress
inside a random composite is given by:

Proposition 3.5. Optimal lower bounds on the L∞ norm of the local
stress.

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by θ1 and θ2, then for an imposed deviatoric macroscopic stress σD the
stress field inside the composite satisfies

‖|σ(x)|‖∞ ≥
∣

∣σD
∣

∣ . (3.5)

For d = 2, 3, when σD = s(a � b) then the lower bound (3.5) is attained by a simple
laminate with n = a or n = b.

The next result provides a lower bound on the Von Mises equivalent stress inside
the component material with the larger shear modulus.

Proposition 3.6. Optimal lower bounds on the moments of the local
Von Mises equivalent stress inside the material with greater shear modulus.

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by θ1 and θ2, then for an imposed deviatoric macroscopic stress σD the
local Von Mises stress field inside the material with larger shear modulus satisfies

〈

χ+|ΠDσ(x)|r
〉1/r ≥ θ

1/r
+

∣

∣σD
∣

∣ , for 2 ≤ r ≤ ∞. (3.6)

For d = 2, 3 and for every 2 ≤ r ≤ ∞ when σD = s(a � b) then the lower bound
(3.6) is attained by a simple laminate. The vector normal to the layer interface for
the optimal laminate is chosen according to n = a or n = b.
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The optimal lower bound on the L∞ norm of the the local Von Mises equivalent
stress inside a random composite is given by:

Proposition 3.7. Optimal lower bounds on the L∞ norm of the local
Von Mises equivalent stress.

Consider any heterogeneous medium with area (volume) fraction of materials one
and two given by θ1 and θ2, then for an imposed deviatoric macroscopic stress σD the
Von Mises equivalent stress field inside the composite satisfies

‖|ΠDσ(x)|‖∞ ≥
∣

∣σD
∣

∣ . (3.7)

For d = 2, 3, when σD = s(a � b) then the lower bound (3.7) is attained by a simple
laminate with n = a or n = b.

3.3. Lower bounds on the local stress that are optimal for a special
class of imposed macroscopic stress states. In this section we start by con-
sidering heterogeneous materials made from two elastic materials sharing the same
shear modulus, i.e., µ1 = µ2 = µ. We present new lower bounds on the full local
stress field that hold for every imposed macroscopic stress σ. The lower bounds are
shown to be optimal for special subsets S1,S2 of imposed macroscopic stresses. The
subsets S1,S2 are given by the set of imposed constant stresses for which one can
construct a confocal-ellipsoid (confocal-ellipse) assemblage that has a constant and
purely hydrostatic stress and strain field inside the core phase. These sets can be
described implicitly using necessary conditions of optimality as in [11, 10]. Here we
use an explicit parameterization of this set recently developed in [32].

We describe the construction of a confocal-ellipsoid assemblage with a core of
material one and a coating of material two noting that the confocal-ellipse assemblage
is constructed in a similar way. Consider R3 filled with an assemblage of ellipsoids
with sizes ranging down to the infinitesimal. Here, all ellipsoids have the same shape
and orientation of axes and differ only in their size. Inside each ellipsoid, one places a
smaller confocal-ellipsoid filled with material one and the surrounding coating is filled
with material two. We call these coated ellipsoids. The part of R3 not covered by the
coated ellipsoids has zero measure. The volume fractions of materials one and two
are the same for each coated ellipsoid in the assemblage.

The set S1 of applied stresses is given explicitly by the parametric representation
[32]

σ =

(

κ2(κ1 + 2 (d−1)µ
d )

κ1 − κ2
+

2θ1µ(d− 1)

d

)

I + 2µθ2(M − 1

d
I), (3.8)

where M ranges over the totality of positive semidefinite d × d matrices with unit
trace. For each σ in S1 one can construct a confocal-ellipsoid assemblage with a
core of material one and a coating of material two such that the local stress inside
the core is constant and hydrostatic. Here the axes of the ellipsoids correspond to
the principal directions of σ. The analogous parameterization of the set of imposed
stresses for which the local stress is constant and hydrostatic for confocal ellipsoids
with a core of material two is obtained by interchanging subscripts one and two in
(3.8). This set of macroscopic stresses is denoted by S2.

The optimal lower bound on the moments of the local stress inside a random
composite is given by:

Proposition 3.8. Optimal lower bounds on the local stress inside ma-
terial one for µ1 = µ2.
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Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ the stress field
inside material one satisfies

〈χ1(x)|σ(x)|r〉1/r ≥ θ
1/r
1

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

|ΠHσ|, for 2 ≤ r ≤ ∞. (3.9)

Moreover for d = 2, 3 and for every r in 2 ≤ r ≤ ∞, when σ lies in the set S1 the lower
bound (3.9) is attained by the local stress inside material one for the confocal-ellipsoid
(confocal-ellipse) assemblage associated with σ.

A similar result holds for local stress fields inside material two.

Proposition 3.9. Optimal lower bounds on the local stress inside ma-
terial two for µ1 = µ2.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress field σ the stress
field inside material two satisfies

〈χ2(x)|σ(x)|r〉1/r ≥ θ
1/r
2

κ1κ2 + 2d−1
d µκ2

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

|ΠHσ|, for 2 ≤ r ≤ ∞. (3.10)

Moreover for d = 2, 3 and for every r in 2 ≤ r ≤ ∞, when σ lies in the set S2,
the lower bound (3.10) is attained by the local stress field inside material two for the
confocal-ellipsoid (confocal-ellipse) assemblage with core of material two associated
with σ.

We conclude this subsection by considering the two trivial lower bounds on the

moments of the local Von Mises equivalent stress given by
〈

χ1(x)|ΠDσ(x)|r
〉1/r ≥ 0

and
〈

χ2(x)|ΠDσ(x)|r
〉1/r ≥ 0. In what follows we make no hypothesis on the bulk

and shear moduli of the component materials and point out that the trivial bounds
are optimal for two subsets of imposed stresses σ. The subsets are denoted by Ŝ1

and Ŝ2 and these sets correspond to the sets S1 and S2 with µ = µ2 and µ = µ1

respectively.

Proposition 3.10. Optimal lower bounds on the local Von Mises equiv-
alent stress inside material one.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ it is evident
that the stress field inside material one satisfies

〈

χ1(x)|ΠDσ(x)|r
〉1/r ≥ 0, for 2 ≤ r ≤ ∞. (3.11)

Moreover for d = 2, 3 and for every r in 2 ≤ r ≤ ∞, when σ lies in the set Ŝ1 the
lower bound (3.11) is attained by the local Von Mises stress inside material one for
the confocal-ellipsoid (confocal-ellipse) assemblage associated with σ.

A similar result holds for local stress fields inside material two.

Proposition 3.11. Optimal lower bounds on the local Von Mises equiv-
alent stress inside material two.
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Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress field σ it is
evident that the stress field inside material two satisfies

〈

χ2(x)|ΠDσ(x)|r
〉1/r ≥ 0, for 2 ≤ r ≤ ∞. (3.12)

Moreover for d = 2, 3 and for every r in 2 ≤ r ≤ ∞, when σ lies in the set Ŝ2,
the lower bound (3.12) is attained by the local Von Mises stress field inside material
two for the confocal-ellipsoid (confocal-ellipse) assemblage with core of material two
associated with σ.

3.4. Optimal lower bounds for general imposed macroscopic stresses
and µ1 = µ2. In this section we consider two-phase heterogeneous media subject to
a general imposed macroscopic stress σ. We suppose that the two materials share
the same shear modulus µ = µ1 = µ2, and we present optimal lower bounds on the
hydrostatic part of the local stress.

The first result is a lower bound on all moments of the local hydrostatic stress
inside each material.

Proposition 3.12. Optimal lower bounds on the local hydrostatic stress
with µ1 = µ2 for media subjected to a general imposed stress.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ the hydrostatic
component of the local stress field inside the i-th material, i = 1, 2, satisfy

〈

χi|ΠHσ(x)|r
〉1/r ≥ θ

1/r
i

κ1κ2 + 2d−1
d µκi

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

|ΠHσ|, for 2 ≤ r ≤ ∞.

(3.13)
Moreover for d = 2, 3, the lower bound (3.13) is attained for every r in 2 ≤ r ≤ ∞ by
the local hydrostatic stress field inside laminates made from layering the two materials
in the prescribed proportions θ1 and θ2. Here the layering can be made along any
direction n.

The next result provides a lower bound on the L∞ norm of the local stress inside
the heterogeneous medium.

Proposition 3.13. Optimal lower bounds on the L∞ norm of the local
hydrostatic stress with µ1 = µ2 for media subjected to a general imposed
stress.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ the hydrostatic
component of the local stress field satisfies

‖|ΠHσ(x)|‖∞ ≥ κ1κ2 + 2d−1
d µκ+

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

|ΠHσ|. (3.14)

Moreover for d = 2, 3, the lower bound (3.14) is attained by the local hydrostatic
stress field inside a simply layered material. Here the layering can be made along any
direction n.
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3.5. Optimal lower bounds for general imposed macroscopic stresses
and κ1 = κ2. In this section we consider two-phase heterogeneous media subject to
any imposed macroscopic stress σ. We suppose that the two materials share the same
bulk modulus, i.e., κ = κ1 = κ2, and we present optimal lower bounds on the local
Von Mises equivalent stress.

The first result is a lower bound on all moments of the local Von Mises equivalent
stress inside the material with greater shear stiffness. To expedite the presentation
we denote the indicator function of and proportion of the material with greater shear
modulus by χ+ and θ+ respectively.

Proposition 3.14. Optimal lower bounds on the moments of the local
Von Mises equivalent stress inside the material with greater shear modulus
for κ1 = κ2.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ the local Von
Mises stress field inside the material with larger shear modulus satisfies

〈

χ+|ΠDσ(x)|r
〉1/r ≥ θ

1/r
+

∣

∣ΠDσ
∣

∣ , for 2 ≤ r ≤ ∞. (3.15)

For d = 2 let ψ1, ψ2 be an orthonormal system of eigenvectors for σ. Then for every r
in 2 ≤ r ≤ ∞, the lower bound (3.15) is attained by the local Von Mises stress inside
a simple laminate with layer normal n = ψ1+ψ2√

2
. Here the deviatoric projection of the

local stress inside this laminate is uniform and given by ΠDσ(x) = ΠDσ.
Remark. For d = 3 a simple calculation based upon the explicit solution for the

stress field inside a simple layered material given by (6.3) – (6.5) shows that the bound
(3.15) is not attained by layered media see.

The next result provides a lower bound on the L∞ norm of the local Von Mises
equivalent stress inside the heterogeneous material.

Proposition 3.15. Optimal lower bounds on the L∞ norm of the Von
Mises equivalent stress for κ1 = κ2.

Consider any heterogeneous medium with volume (area) fraction of materials one
and two given by θ1 and θ2, then for any imposed macroscopic stress σ the local Von
Mises equivalent stress inside the medium satisfies

‖|ΠDσ(x)|‖∞ ≥
∣

∣ΠDσ
∣

∣ . (3.16)

For d = 2, the lower bound (3.16) is attained by the local Von Mises stress inside a
simple laminate with layer normal n = ψ1+ψ2√

2
.

4. Upper bounds on the macroscopic strength domain for random het-
erogeneous materials. In this section we apply the optimal lower bounds on local
stress fields to display new tight upper bounds for strength domains. We begin by
considering the case of hydrostatic applied loads of the form pI. For this case the local
stress is of the form σ(x) = pI + σ̂(x) and 〈σ〉 = pI. The local stress is related to the
local strain through (2.5) and satisfies the equations of elastic equilibrium specified
in Section 2.

In what follows we display an upper bound on the strength domain associated
with norm of the local stress inside the composite. We suppose that failure is initiated
inside phase one when |σ(x)| = F1 over some subset of phase one and inside phase two
when |σ(x)| = F2 over some subset of phase two. We suppose that only the volume
fractions are known, i.e., 〈χ1〉 = θ1 and 〈χ2〉 = 1 − θ1 and we define the macroscopic
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strength domain KSafe to be the set of applied stresses pI for which the local stress
field σ(x) satisfies the local constraints

χ1(x)|σ(x)| < F1, χ2(x)|σ(x)| < F2. (4.1)

We write

L1(θ1) =

√
3(κ1κ2 + 4

3µ2κ1)

κ1κ2 + 4
3µ2(θ1κ1 + θ2κ2)

and L2(θ1) =

√
3(κ1κ2 + 4

3µ1κ2)

κ1κ2 + 4
3µ1(θ1κ1 + θ2κ2)

(4.2)

and define the upper bound K to be the set of matrices of the form pI that satisfy
the constraints given by

|p|L1(θ1) ≤ F1 and |p|L2(θ1) ≤ F2 (4.3)

We now present a tight upper bound on KSafe.
Proposition 4.1. Upper bound on the macroscopic strength domain

for hydrostatic applied loads
Suppose that µ1 > µ2, κ1 > κ2, F1 ≤ F2 and θ1 is given, then KSafe ⊂ K.

Moreover K is a tight upper bound in that p ∈ K implies that the local stress |σ(x)|
lies below the failure threshold inside both phases for the coated sphere construction
with core material one and coating material two. And p 6∈ K implies that the threshold
has been exceeded everywhere inside the core phase of the coated sphere assemblage.

Proof. Setting r = ∞ in (3.1) and (3.2) gives

|p|L1(θ1) ≤ ‖χ1|σ|‖∞ and |p|L2(θ1) ≤ ‖χ2|σ|‖∞ (4.4)

and inspection shows that L1(θ1) > 1 > L2(θ1). Now for the coated sphere assem-
blage with a core phase of material one an easy computation shows that |p|L1(θ1) =
‖χ1|σ|‖∞ = ‖|σ|‖∞ and the upper bound follows.

Next consider an applied deviatoric stress of the form σD = s(a � b), where
the unit vectors a and b are orthogonal. For this case the local stress is of the form
σ(x) = σD+ σ̂(x) and 〈σ〉 = σD. The local stress is related to the local strain through
(2.5) and satisfies the equations of elastic equilibrium specified in Section 2. In this
example no volume fraction constraints are imposed and we consider the macroscopic
strength domain KSafe defined to be the set of all applied stresses σD for which the
local stress satisfies the local constraints given by

χ1(x)|ΠDσ(x)| < F1 and χ2(x)|ΠDσ(x)| < F2. (4.5)

Now we define K to be the set of matrices of the form σD = s(a�b) that satisfy the
constraint given by

|σ| ≤ min(F1, F2) (4.6)

and we have the following tight upper bound.
Proposition 4.2. Upper bound on the macroscopic strength domain

for deviatoric applied loads
Suppose µ1 > µ2, κ1 > κ2, and F1 ≤ F2 then KSafe ⊂ K. Moreover K is

a tight upper bound in that σD ∈ K implies that the local deviatoric component of
stress |ΠDσ(x)| lies below the failure threshold inside both phases for a simple layered
material with layer normal chosen parallel to a or b. And σD 6∈ K implies that the
threshold has been exceeded everywhere inside phase one of the layered material.

Proof. This result easily follows from (3.7) and (6.8).
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5. Lower bounds on the local stress. In this section, we derive the lower
bounds on the local stress inside random heterogeneous media. The lower bounds are
established with the aid of two inequalities that easily follow from Jensen’s inequality.
Let ψ(x) be a d× d stress field defined on Rd. Then

〈χi(x)ψ(x) : ψ(x)〉 ≥ 1

θi
|〈χi(x)ψ(x)〉|2 (5.1)

and

〈ψ(x) : ψ(x)〉 ≥ |〈ψ(x)〉|2 . (5.2)

These inequalities are strict in that equality holds in (5.1) only if ψ(x) is constant
on the set of points where χi = 1 and in (5.2) only if ψ(x) is constant everywhere.

5.1. Hydrostatic applied stress. In this section the imposed macroscopic
stress is taken to be hydrostatic, i.e., σ = pI and the two materials are well ordered.
Without loss of generality we make the choice µ1 > µ2 and κ1 > κ2. The lower
bounds (3.1), (3.2), (3.3) follow immediately from the optimal lower bounds on the
hydrostatic component of local stress given in [28] on noting that |σ(x)| ≥ |ΠHσ(x)|.
In Section 6.1 we establish the optimality of these lower bounds for the well ordered
case.

5.2. Deviatoric applied stress. In this section we derive the lower bounds
given by (3.4), (3.5), (3.6), and (3.7). Here we examine the local stress field inside the
material with larger shear modulus and without loss of generality we suppose that
the shear modulus of material one is greater than that of material two, i.e., µ1 > µ2.
In Section 6.2 these lower bounds are shown to be optimal for imposed macroscopic
deviatoric stresses in two dimensions and for imposed macroscopic stresses that are
pure shear stresses in three dimensions.

We start by taking ψ = ΠDσ in Eq. (5.1) to obtain the basic lower bound given
by

〈

χ1Π
Dσ(x) : ΠDσ(x)

〉

≥ 1

θ1

∣

∣

〈

χ1Π
Dσ(x)

〉
∣

∣

2
(5.3)

In what follows we obtain a lower bound for the right hand side of (5.3). First we
note that the average stress inside material one can be written as

〈χ1σ(x)〉 = 〈χ1C(x)ε(x)〉 = C1 〈χ1ε(x)〉 . (5.4)

Averaging the local stress-strain relation σ(x) = C(x)ε(x) and applying the definition
of the effective elastic tensor gives

σ = Ceε = C2ε+ (C1 − C2) 〈χ1ε(x)〉 (5.5)

and the deviatoric part of the average macroscopic stress is given by

ΠDσ = 2µ2Π
Dε+ 2(µ1 − µ2)

〈

χ1Π
Dε(x)

〉

(5.6)

and it follows that

〈

χ1Π
Dσ(x)

〉

=
2µ1µ2

µ1 − µ2

(

1

2µ2
ΠDσ − ΠD(Ce)−1σ

)

. (5.7)
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Up to this point we have assumed that the imposed macroscopic stress was given
by an arbitrary d × d matrix. From now on in this subsection we will assume that
the imposed macroscopic stress is taken to be deviatoric for both two and three
dimensional elastic problems, i.e.,

σ = σD = ΠDσD (5.8)

and one obtains

〈

χ1Π
Dσ(x)

〉

=
2µ1µ2

µ1 − µ2

(

1

2µ2
ΠD − ΠD(Ce)−1

)

ΠDσ. (5.9)

We apply Cauchy-Schwarz inequality to find that

∣

∣

〈

χ1Π
Dσ(x)

〉
∣

∣

2 ≥ (
2µ1µ2

µ1 − µ2
)2

(

1
2µ2

ΠDσ : ΠDσ − (Ce)−1ΠDσ : ΠDσ
)2

|ΠDσ|2 . (5.10)

The effective elasticity tensor Ce satisfies the following well known estimate, see [40]

(Ce)−1σ : σ ≤ (θ1(C
1)−1 + θ2(C

2)−1)σ : σ. (5.11)

From Eq. (5.11) one obtains

(Ce)−1ΠDσ : ΠDσ ≤
(

θ1
2µ1

+
θ2
2µ2

)

∣

∣ΠDσ
∣

∣

2
(5.12)

and it follows from Eq. (5.12) that

1

2µ2
ΠDσ : ΠDσ − (Ce)−1ΠDσ : ΠDσ ≥ θ1(µ1 − µ2)

2µ1µ2

∣

∣ΠDσ
∣

∣

2
. (5.13)

From Eqs. (5.3), (5.10), and (5.13), one obtains

〈

χ1|ΠDσ(x)|2
〉

≥ θ1
∣

∣ΠDσ
∣

∣

2
. (5.14)

For p and q such that p ≥ 1 and 1/p+ 1/q = 1, Hölder’s inequality gives

θ
1/q
1

〈

χ1|ΠDσ(x)|2p
〉1/p ≥

〈

χ1|ΠDσ(x)|2
〉

(5.15)

and hence the inequality

〈

χ1|ΠDσ(x)|2p
〉1/p ≥ θ

1/p
1

∣

∣ΠDσ
∣

∣

2
, (5.16)

for 1 ≤ p ≤ ∞, from which the bound (3.6) follows. The bound (3.4) now follows
immediately from (5.16) and on noting that

〈χ1|σ(x)|r〉1/r ≥
〈

χ1|ΠDσ(x)|r
〉1/r

, for 2 ≤ r ≤ ∞. (5.17)

The bounds (3.5) and (3.7) follow immediately on substitution of ψ(x) = ΠDσ(x)
into (5.2) and noting that

‖|σ(x)|‖∞ ≥ ‖|ΠDσ(x)|‖∞ ≥
√

〈|ΠDσ(x)|2〉 ≥ |ΠDσ|. (5.18)
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5.3. Lower bounds on stress fields subject to general imposed macro-
scopic stresses and µ1 = µ2. In this subsection the imposed macroscopic stress is
assumed to be any constant d× d stress tensor, d = 2, 3. In what follows we suppose
that the two component materials share the same shear modulus, i.e., µ = µ1 = µ2,
and we derive the lower bounds given by (3.9), (3.10), (3.13), and (3.14). In Section 6
the lower bounds on the full local stress are shown to be optimal for special sets S1

and S2 and the lower bounds on the hydrostatic component of the local stress is shown
to be optimal for all imposed macroscopic stresses.

It follows immediately from Eqs. (5.4) and (5.5) that

〈

χ1Π
Hσ(x)

〉

=
κ1

κ1 − κ2

(

ΠHσ − dκ2Π
Hε
)

. (5.19)

Taking ψ = ΠHσ in Eq. (5.1) shows that hydrostatic stress inside material one
satisfies the following estimate

〈

χ1Π
Hσ(x) : σ(x)

〉

≥ 1

θ1

∣

∣

〈

χ1Π
Hσ(x)

〉∣

∣

2
. (5.20)

For a composite consisting of two isotropic phases of equal shear moduli (µ1 =
µ2 = µ), Hill’s relation [17] gives

Ce = 2µΠD + dκeΠH , (5.21)

where

κe = (θ1κ1 + θ2κ2) −
θ1θ2(κ1 − κ2)

2

θ1κ2 + θ2κ1 + 2d−1
d µ

. (5.22)

From Eqs. (2.9) and (5.21), one obtains

ΠHε =
1

dκe
ΠHσ, (5.23)

hence

〈

χ1Π
Hσ(x)

〉

=
κ1

κ1 − κ2
(1 − κ2

κe
)ΠHσ. (5.24)

From estimate (5.20) we recover

〈

χ1Π
Hσ(x) : σ(x)

〉

≥ κ2
1

θ1(κ1 − κ2)2
(1 − κ2

κe
)2
∣

∣ΠHσ
∣

∣

2
(5.25)

and using the formula for κe given (5.22) we express (5.25) as

〈

χ1Π
Hσ(x) : σ(x)

〉

≥ θ1

(

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

)2
∣

∣ΠHσ
∣

∣

2
. (5.26)

An application of Hölder’s inequality to (5.26) delivers

〈

χ1|ΠHσ(x)|r
〉1/r ≥ θ

1/r
1

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

∣

∣ΠHσ
∣

∣ , (5.27)
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for 2 ≤ r ≤ ∞. Identical arguments give lower bounds on the hydrostatic stress
inside phase two and the lower bound (3.13) is established. The L∞ bound, Eq.
(3.14), follows from the bound (3.13) by taking r = ∞ noting that ‖|ΠHσ(x)|‖∞ ≥
‖χi|ΠHσ(x)|‖∞ for i = 1, 2.

To establish the bounds (3.9) and (3.10), we observe that because of orthogonality
one obtains

|σ(x)|2 = |ΠHσ(x)|2 + |ΠDσ(x)|2 ≥ |ΠHσ(x)|2, (5.28)

hence

〈χi(x)|σ(x)|r〉1/r ≥
〈

χi(x)|ΠHσ(x)|r
〉1/r

. (5.29)

The bounds (3.9) and (3.10) follow from Eqs. (3.13) and (5.29).

5.4. Lower bounds on stress fields subject to general imposed macro-
scopic stresses and κ1 = κ2. In this subsection no constraints are placed on the
imposed macroscopic stress. The imposed macroscopic stress can be any constant
d × d stress tensor, d = 2, 3. In what follows we suppose that the two component
materials share the same bulk modulus, i.e., κ = κ1 = κ2 and we derive new lower
bounds on the local Von Mises stress inside the material with greater shear stiffness.
To fix ideas we suppose that material one has the greater shear stiffness, i.e., µ1 > µ2.
We will establish the lower bound Eq. (3.15) with the aid of the following observation
whose proof is provided in the Appendix.

Form of effective stiffness tensor for mixtures of two elastically isotropic
materials having common bulk modulus.

For κ = κ1 = κ2, the effective elasticity tensor Ce can be written as

Ce = ΠDCeΠD + dκΠH (5.30)

and consequently

(Ce)−1 = (ΠDCeΠD)−1 +
1

dκ
ΠH . (5.31)

Choosing ψ = ΠDσ in Eq. (5.1) gives

〈

χ1Π
Dσ(x) : σ(x)

〉

≥ 1

θ1

∣

∣

〈

χ1Π
Dσ(x)

〉∣

∣

2
. (5.32)

We notice from Eq. (5.30) that Ce commutes with ΠD which implies that (Ce)−1

commutes with ΠD. Thus from Eq. (2.9) it follows that

ΠDε =ΠD(Ce)−1σ= (Ce)−1ΠDσ. (5.33)

Thus Eq. (5.7) becomes

〈

χ1Π
Dσ(x)

〉

=
2µ1µ2

µ1 − µ2

(

1

2µ2
ΠDσ − (Ce)−1ΠDσ

)

. (5.34)

We apply Cauchy-Schwarz inequality to find that

∣

∣

〈

χ1Π
Dσ(x)

〉
∣

∣

2 ≥ (
2µ1µ2

µ1 − µ2
)2

( 1
2µ2

ΠDσ : ΠDσ − (Ce)−1ΠDσ : ΠDσ)2

|ΠDσ|2 . (5.35)
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With (5.35) in hand we proceed as in Section 5.2 to discover

〈

χ1Π
Dσ(x) : σ(x)

〉

≥ θ1
∣

∣ΠDσ
∣

∣

2
. (5.36)

The bounds (3.15) now follow from Hölder’s inequality and arguments identical to
those of Section 5.2.

The bound (3.16) follows directly from

‖|ΠDσ(x)|‖∞ ≥
√

〈ΠDσ(x) : σ(x)〉 ≥
∣

∣ΠDσ
∣

∣ . (5.37)

6. Microstructures that support optimal local fields. It is well known that
the coated sphere, coated ellipsoid and laminated microstructures possess optimal
effective elastic properties, for reviews of the literature see [32] and [46]. In the
following subsections we show that these microstructures possess optimal local field
properties as well.

6.1. The coated sphere construction and optimal lower bounds on local
stress fields. In this section, it is shown that the lower bounds presented in Section
(3.1) are attained by the stress fields inside the Hashin-Shtrikman [14, 15] coated
cylinder and sphere assemblages, see Figure 6.1(a). We introduce the normalized Lp

norm of a field f over a domain S by (|S|−1
∫

S
|f(x)|p dx)1/p. One striking feature of

the fields inside the coated sphere and cylinder assemblage is that the normalized Lp

norm of the local stress or strain taken over a prototypical coated cylinder or sphere
is the same as the Lp norm of the whole assemblage. Thus the Lp norms of local fields
inside these assemblages are obtained by computing the Lp norm of a prototypical
coated sphere or disk.

Assume that the applied field σ is hydrostatic, σ = pI, and consider the stress
field inside a prototypical coated sphere (cylinder) centered at the origin with core of
material one and coating of material two. We recall from [28] that the lower bound
on the hydrostatic component of stress inside material one is given by the right hand
side of (3.1) and it is attained by the stress field inside the core phase of the coated
sphere (cylinder) assemblage.

Therefore it follows that the local stress inside material one attains the optimal
lower bound on the hydrostatic stress given in [28] and attainability of the lower
bound (3.1) follows. Similar arguments show the lower bound (3.2) is attained by the
stress field inside material two of the coated sphere (cylinder) assemblage with core
of material two and coating of material one.

Next we show that the L∞ bound (3.3) is attained by the stress field inside the
coated sphere (cylinder) assemblage with core material one and coating material two.
A straightforward calculation shows that

‖χ1|σ|‖2
∞ − ‖χ2|σ|‖2

∞ =
d

(κ1κ2 + 2
(

d−1
d

)

µ2 (θ1κ1 + θ2κ2))2
|p|2 ×

(κ1 − κ2)

(

4µ2

(

d− 1

d2

)

(dκ1κ2 + µ2((d− 2)κ1 + dκ2))

)

(6.1)

and it is evident from Eq. (6.1) that ‖χ1|σ|‖2
∞ ≥ ‖χ2|σ|‖2

∞ hence

‖|σ|‖∞ = ‖χ1|σ|‖∞ =

√
d(κ1κ2 + 2d−1

d µ2κ1)

κ1κ2 + 2d−1
d µ2 (θ1κ1 + θ2κ2)

|p| (6.2)

and the lower bound (3.3) is attained.
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(a) Coated cylinder assemblage (b) Confocal-ellipse assemblage (c) Layered material

Fig. 6.1. Extremal Microstructures

6.2. The stress field inside simple laminates and optimal bounds on
local fields. For a laminate made from two isotropic phases the local stress field is
piecewise constant under uniform applied stress σ. The (constant) field inside the i-th
phase is denoted by σi and calculation gives

σ1 =

(

(C1)−1 +
θ1
θ2

(C2)−1

)−1(

λ� n +
1

θ2
(C2)−1σ

)

(6.3)

σ2 =

(

(C2)−1 +
θ2
θ1

(C1)−1

)−1(

−λ� n +
1

θ1
(C1)−1σ

)

(6.4)

with

λ� n = −A(σn � n) +

(

B(σn · n) + C
trσ

d

)

n � n, (6.5)

where

A =
∆µ

µ1µ2

B = ∆µ

(

〈κ〉 (1 − 2
d ) + 〈µ〉 κ1κ2

µ1µ2

2µ1µ2 〈κ〉 (1 − 1
d ) + κ1κ2 〈µ〉

)

C =
∆µ 〈κ〉 − ∆κ 〈µ〉

2µ1µ2 〈κ〉 (1 − 1
d ) + κ1κ2 〈µ〉

, (6.6)

where 〈µ̃〉 = θ1µ2 + θ2µ1, and 〈κ̃〉 = θ1κ2 + θ2κ1. Here ∆µ = µ1 − µ2, ∆κ = κ1 − κ2,
〈µ〉 = θ1µ1 + θ2µ2, and 〈κ〉 = θ1κ1 + θ2κ2.

We recall that both deviatoric applied stress in two dimensions as well as pure
shear stresses in three dimensions can be expressed in the form σ = s(a � b) with
a · b = 0, |a| = 1 and |b| = 1. On choosing n = a or n = b in (6.5), one easily sees
that

λ� n = − ∆µ

2µ1µ2
σ (6.7)

and it follows from Eqs. (6.3) and (6.4) that

σ1 = σ2 = σ. (6.8)
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From this observation it is evident that the stress field inside this simple laminate
attains the bounds (3.4), (3.5), (3.6), and (3.7).

When both materials share the same shear modulus we find that the hydrostatic
stress fields inside simple laminates have extremal properties. We demonstrate first
that the lower bounds (3.13) and (3.14) are attained by the hydrostatic stress fields
inside any simple laminate. For a simple laminate the stress field inside each material
is constant hence both sides of inequality (5.20) are in fact equal and

〈

χ1Π
Hσ(x) : σ(x)

〉

=
1

θ1

∣

∣

〈

χ1Π
Hσ(x)

〉∣

∣

2
= θ1

∣

∣ΠHσ1
∣

∣

2
, (6.9)

where σ1 is the constant field inside material one. On the other hand, since µ1 = µ2

one obtains from Eqs. (5.24) and (5.22) that

1

θ1

∣

∣

〈

χ1Π
Hσ(x)

〉∣

∣

2
= θ1

(

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

)2
∣

∣ΠHσ
∣

∣

2
. (6.10)

Thus it follows from Eqs. (6.9) and (6.10) that the local hydrostatic stress inside
a simply layered laminate attains the bound (3.13) when i = 1. Given µ1 = µ2

these arguments show that if the stress field is constant inside material one then
its hydrostatic part attains the lower bound (3.13). Similar arguments show the
optimality of the bound (3.13) when i = 2. The fact that the hydrostatic stress inside
a rank-one laminate attains the bound (3.13) for i = 1 and i = 2, implies that it also
attains the L∞ bound (3.14).

We suppose that κ1 = κ2, d = 2 and we denote the orthonormal system of
eigenvectors for a prescribed 2 × 2 imposed macroscopic stress by ψ1, ψ2. We show
that the lower bounds presented in Section (3.5) are attained by the stress fields inside
a rank-one laminate with layering direction n = 1√

2
(ψ1 + ψ2), see Figure 6.1(c).

Choosing κ1 = κ2 and n = 1√
2
(ψ1 + ψ2) in (6.5) gives

λ� n = − ∆µ

2µ1µ2
ΠDσ (6.11)

and it follows from Eqs. (6.3) and (6.4) that

ΠDσ1 = ΠDσ2 = ΠDσ. (6.12)

From this observation it is evident that the stress field inside this rank-one laminate
attains the bounds (3.15) and (3.16).

6.3. The confocal ellipsoid (ellipse) assemblage and optimal lower bounds
on local stress fields for subsets of imposed macroscopic loads. In this sec-
tion, it is shown that the lower bounds (3.9), (3.10), (3.11), and (3.12) are attained
by the stress fields inside the confocal-ellipsoid and confocal-ellipse assemblages, see
Figure 6.1(b). Assuming that the uniform stress lies in S1 it follows that there is a
confocal-ellipsoid (confocal-ellipse) assemblage with core of material one and coating
of material two associated with σ such that the local stress inside the core material is
constant and hydrostatic. Since the stress field inside material one is constant, then
it follows from earlier arguments that

〈

χ1Π
Hσ(x) : σ(x)

〉

= θ1

(

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

)2
∣

∣ΠHσ
∣

∣

2
. (6.13)



20 B. ALALI AND R. LIPTON

On the other hand, since the stress field in material one is hydrostatic one sees that

〈

χ1Π
Dσ(x) : σ(x)

〉

= 0 (6.14)

and it is also evident that the lower bounds (3.11) are attained. From Eqs. (6.13)
and (6.14), and the fact that σ(x) = ΠHσ(x) + ΠDσ(x) one obtains

〈χ1σ(x) : σ(x)〉 = θ1

(

κ1κ2 + 2d−1
d µκ1

κ1κ2 + 2d−1
d µ(θ1κ1 + θ2κ2)

)2
∣

∣ΠHσ
∣

∣

2
, (6.15)

from which optimality of the bound (3.9) follows. Identical arguments show that the
local stress field inside material two of a confocal-ellipsoid (confocal-ellipse) assem-
blage with core of material two and coating of material one saturates the bounds
(3.10) and (3.12).

7. Conclusion. The results presented in this work are partial. They are given
by a set of optimal bounds that apply to several different types of load cases and
(or) for specific constraints on the elastic properties of the constituent materials.
Naturally the ultimate goal is to find optimal lower bounds on local stress fields for
all imposed macroscopic stresses and for arbitrary choices of material properties. In
this section we briefly review our methodology to identify the issues that prevent us
from obtaining results for more general situations.

The method developed here identifies the appropriate applications of Jensen’s
inequality and Hölder’s inequality necessary to bound the moments of the local field
inside each material phase. A slight reinterpretation of (5.3) and (5.7), (5.19) and
(5.20), as well as (5.32) and (5.34) of Section 5 shows that this procedure delivers
lower bounds given in terms of quadratic functions of the averaged stress and strain
fields. For average stress that are either hydrostatic or of pure shear type we have
identified cases when these lower bounds can be expressed as functions of the overall
strain or compliance energy of the composite. Alternatively when the effective elastic
tensor for the composite can be written as a sum of projections onto the subspaces
of deviatoric and hydrostatic strains (via the exact relations of Hill [17] or (5.30)
developed in Appendix A) we have identified cases when the lower bounds on the
local fluctuations can also be expressed as functions of the overall strain or compliance
energy. For these cases we can apply the known bounds on overall elastic energies for
composite materials to obtain lower bounds on the moments of the local fields given
in terms of the volume fractions and the elastic constants of the constituent materials.

In order to extend the results presented here one needs to further develop our
understanding of the set of average stress strain pairs associated with composite me-
dia. One direction is to pursue the derivation of new explicit lower bounds on the
moments of local fields given in terms of material properties and volume fractions
for the general contractions of average stress and strain pairs appearing in (5.3) and
(5.7), (5.19) and (5.20), as well as (5.32) and (5.34). In this context we point out
the potential applicability of the recent methods developed for bounding the set of
average stress and strain pairs presented in [44] and for bounding the pairs of average
current and electric fields for composites made from nonlinear conducting materials
[34].

A second related issue concerns the optimality of lower bounds on the moments
of the local stress field. We point out here that Jensen’s inequality and convexity
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shows directly that the lower bounds delivered by combining (5.3) and (5.7), (5.19)
and (5.20), as well as (5.32) and (5.34) of Section 5 are attained exclusively by mi-
crostructures supporting constant local stress fields inside the phase of interest. In
this work we have utilized the constant field microstructures given by coated spheres,
ellipsoids and rank one laminates. Other microgeometries supporting constant local
fields include the “Vigdergauz” microstructures [48] and the more recently discovered
“E” inclusions [30]. Thus future progress is contingent on the ability to characterize
the range of average stress and strain pairs generated by the constant field microstruc-
tures.

We conclude noting that in this treatment the analysis is carried out for situations
where the underlying probability measure describing the local elastic properties of
the random medium is not known. In this context we consider cases when only
the material properties and volume fraction information are available. When the
probability measure as well as other pieces of information describing the composite
are available it is possible to say more. For example in [24] the authors consider
elastic – perfectly plastic composites described by partitions of the material body into
subdomains where the random elastic property inside each subdomain is described by
an independent and identically distributed random variable. In that work the local
set undergoing plastic deformation is shown to be of a fractal nature and the overall
transition from elastic to plastic is smooth. This may be compared with the extremal
layered materials described in Proposition 4.2. When the magnitude of the imposed
shear stress σ = s(a�b) equals the plastic limit of the stiff material then Proposition
4.2 shows that for layerings of two materials with layer normal oriented along either
the a or b axes that the local Von Mises stress attains the plastic limit everywhere
inside the stiffer layers. When the magnitude of the imposed shear stress lies below
the plastic limit of the stiff material then Proposition 4.2 states that the local Von
mises stress lies below the plastic limit everywhere inside the layered composite. Thus
the overall elastic to plastic transition for these layered composite geometries is not
smooth but instead are identical to the abrupt elastic to plastic transition of the stiff
layer.

Appendix. Here we provide a proof for equation (5.30) presented in Section 5.4.
Let ε = 〈ε〉. Then since the two materials are isotropic and κ1 = κ2 = κ one obtains

Ceε = 〈C(x) ε(x)〉
=
〈

2µ(x)ΠDε(x)
〉

+
〈

d κΠHε(x)
〉

= ΠD 〈2µ(x)ε(x)〉 + d κΠHε. (7.1)

Since ΠHΠD = 0, one obtains from Eq. (7.1) that

ΠHCeε = d κΠHε. (7.2)

For a deviatoric uniform field ε = ΠDε, it follows from Eq. (7.1) that

CeΠDε = ΠD 〈2µ(x)ε(x)〉 . (7.3)

Thus for any two uniform strain fields ξ and η

CeΠHη : ΠDξ =CeΠDξ : ΠHη= ΠHCeΠDξ : η = 0 (7.4)
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and using this observation one finds that

Ceξ : η = Ce(ΠDξ + ΠHξ) : (ΠDη + ΠHη)

= CeΠDξ : ΠDη + CeΠHξ : ΠHη

= ΠDCeΠDξ : η + ΠHCeΠHξ : η (7.5)

From Eq. (7.2) one obtains

ΠHCeΠHξ : η = d κΠHξ : η (7.6)

Thus Eq. (7.5) becomes

Ceξ : η = (ΠDCeΠD + d κΠH) ξ : η (7.7)

from which Eq. (5.30) follows.
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