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Abstract. We introduce asymptotic expansions for recovering the local field behavior inside
multiscale composite architectures in the presence of residual stress. The theory applies to zones
containing abrupt changes in the composite microgeometry. This includes the interfaces between plies
inside fiber reinforced laminates. The asymptotic expansions are used to develop a fast numerical
algorithm to extract local field information inside a prescribed subdomain without having to resort to
a full numerical simulation. For regions of homogeneous microstructure, the analysis delivers bounds
on the magnitude of the local stress and strain fields inside the composite. Numerical examples are
provided to demonstrate the utility of the asymptotic theory for quickly assessing the location and
magnitude of local field concentrations inside complex composite architectures.
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1. Introduction. The new generation of high performance composites features
a hierarchy of substructures deployed across several length scales [35]. These include
advanced composite architectures made from woven fiber tows and fiber reinforced
laminates. These architectures are characterized by abrupt changes in the microstruc-
ture at the interface between substructural units. Understanding the behavior of
local stress and strain fields across these regions is necessary for quantifying failure
initiation inside composite structures. In this paper we employ suitable asymptotic
expansions to develop algorithms useful for the numerical simulation of local fields
across interfaces where the microstructure changes abruptly.

The last several years has seen the introduction and rapid development of sophis-
ticated multiscale approaches for the numerical modeling of fields inside composites
and heterogeneous media. Some recent reviews and foundational work in this rapidly
growing literature are presented in [1, 7, 10, 13, 14, 15, 18, 21, 22, 23, 24, 35, 39, 40,
41, 44, 46, 48]. All multiscale methods naturally employ some form of local enhance-
ment of the approximation space in order to capture the higher frequency oscillations
arising from material heterogeneity. These methods, although not based upon ho-
mogenization theory, can, in some cases, be motivated by the intrinsic multiscale
construction used in the homogenization method [3], [8], and [45]. It is anticipated
that the methods developed in this paper will provide motivation for selecting local
approximation spaces useful for local FEM enhancement across prestressed zones over
which the microstructure changes rapidly.

The approach developed here applies to composite materials with residual stress
and is tailored to resolve field behavior across regions where there is abrupt variation
in the local microgeometry. The numerical method developed in this paper provides
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a fast way to extract local field information inside prescribed subdomains without
having to resort to a full numerical simulation. The numerical method is compared
to a direct numerical simulation for a symmetric three ply laminate in Section 4. For
subregions containing a fixed periodic microstructure such as the interior of a ply or
woven tow, our approach delivers asymptotically tight upper bounds on the magnitude
of the local stress and strain fields inside these regions. The bounds are shown to hold
when the microstructure is sufficiently small relative to the characteristic length scale
of the ply width or tow diameter. The upper bounds are computed for selected plies
inside a symmetric eight ply laminate perforated by a circular hole in Section 5. The
bounds provide a quick and numerically inexpensive means to examine the effect of
residual stress inside composite structures.

The asymptotic expansions developed here are seen to converge in the point wise
sense see, Section 3. However, in this article we do not give estimates for the conver-
gence rates of these expansions in terms of Lp or sup norms. For the fiber reinforced
laminates studied here it is important to note that the rate of convergence depends
upon the penetration of the boundary layers near free edges and in the vicinity of
ply interfaces, [4], [9], [37], and [38]. Additionally the presence of local field concen-
trations generated by irregularities such as inclusions with sharp corners can foil any
attempt at establishing uniform convergence [17], [29], [31], [34], [36]. The effects of
the boundary layer are discussed in Section 4 where a direct numerical simulation
is carried out for a symmetric three ply laminate. For this example the fibers are
arranged periodically inside each ply and each ply is six period cells thick. The top
and bottom plies have long cylindrical fibers oriented with generators parallel to the
x axis. The middle ply has fibers oriented with generators along the y axis. The
plies are infinite in extent along the x direction and twenty periods wide along the
y direction and the laminate is subjected to a 1% strain in the x direction see, Fig-
ure 4.2. The simulations show that the asymptotic theory captures the trends up to
about one fiber diameter away from the free edge see, Figure 4.4 and the discussion
in Section 4. However the error between the asymptotic expansions and the direct
numerical simulation should increase for more general types of fiber distributions due
the enhanced penetration of boundary layer effects associated with the free edge [6].

The presence of residual stress inside composite materials is an important factor
that influences the processing and design of structural components [11], [12], [27],
and [28]. Its effects are spread across several length scales, the smallest being the
fiber-matrix length scale, the next being the inter laminar length scale and the largest
being the structural length scale. The net result of these effects can be seen in the
warpage of autoclaved composite parts [2]. The recent work of [47] models each ply
as a homogeneous orthotropic material and examines the effect of fiber prestress at
inter laminar length scales while the numerical and experimental work presented in
[5] details the effects of residual stress at the fiber-matrix length scale. The numerical
analysis presented in Section 5 is in some sense complementary to these efforts. In
Section 5 we consider the combined effects of residual stress at the fiber-matrix length
scale and at the inter laminar length scale and present a numerical procedure to resolve
the local strain field at the fiber-matrix length scale inside each ply. The simulations
are carried out for an eight ply symmetric laminate. The first simulation in Section 5
characterizes the local hydrostatic strain in the absence of residual stress, see Figures
5.11, 5.13, 5.15, while the second is carried out in the presence of residual stress due
to matrix shrinkage after curing, see Figures 5.12, 5.14, 5.16.

Earlier related work focuses on developing suitable theoretical methods for the
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assessment of local stress and strain fields inside non prestressed heterogeneous me-
dia. The work of [32], [33] develops rigorous upper bounds on local stress invariants
in the general context of G-convergence by exploiting the differentiability of G-limits.
A formal notion of quantities similar to correctors has recently been applied to ana-
lyze local fields in the neighborhood of microscopic stress concentrations [16, 25, 42].
For prestressed elastic composites, a formal procedure has been developed for field
approximation inside zones containing a fixed periodic microstructure in [20]. The
asymptotic expansions given in Theorem 3.2 provide the rigorous context for the
multiscale arguments given in [20].

The paper is organized as follows: In Section 2, we review the homogenization
theory relating average (macroscopic) stresses to average (macroscopic) strains inside
prestressed multi-phase elastic composites. In Section 3, we develop the asymptotic
analysis through the introduction of suitable corrector problems. In Section 4, we
construct high fidelity asymptotic expansions for composite laminates and develop
a computational method for local field recovery. The method is compared to direct
numerical simulation for a three ply laminate and is found to capture the trends
seen in the direct numerical simulation at a fraction of the computational cost. For
subregions containing a fixed periodic microsturcture, the asymptotic analysis is used
to develop upper bounds on the magnitude of the local stress and strain fields inside
the composite, see Section 5. The bounds are computed numerically for the local
strain inside an eight ply laminate perforated by a circular hole. The proofs of the
asymptotic expansions are provided in Section 6. In this paper, all direct numerical
simulations and computations based on asymptotic expansions are carried out using
the B-Spline Analysis Method (BSAM) [26].

We conclude by introducing standard notation for representing products and con-
tractions of tensors used in elasticity theory. The convention that repeated indices
indicate summation is used throughout. Products of elastic tensors C and strain ten-
sors e are written as Ce = Cijklekl, contractions of two second order tensors σ and
e are written as σ : e = σijeij , the norm of a second order tensor is |e| = (e2ij)

1/2,
contraction of a second order tensor and a vector is written ex = eijxj and tensor
products of vectors a and b are denoted by a ⊗ b = aibj .

2. Homogenization. In this section, we provide a brief review of homogeniza-
tion theory for prestressed composites. We consider a composite structure made from
N different materials. Each material is characterized by its elastic tensor Cm as well
as its stress free strain em, m = 1, 2, . . . , N . In our context, the stress free strain
accounts for the thermal expansion or contraction inside the mth material due to a
temperature change inside the structure. The elasticity tensor inside each phase sat-
isfies the ellipticity and boundedness conditions given by 0 < λ|η|2 < Cmη : η < Λ|η|2

for every constant 3×3 strain η and 0 < λ < Λ. The multi-phase composite structure
is contained inside a bounded domain in R3 denoted by Ω (see Figure 2.1). The
structure is given by the union of several subdomains Ω1,Ω2, . . . ,ΩL inside which the
microstructure is periodic. Each subdomain is distinguished by the presence of a dif-
ferent periodic microstructure. This type of “locally periodic” microstructure is often
used to describe the microstructure inside engineering composites such as fiber rein-
forced laminates and braided fiber reinforced composites. The characteristic length
scale of the microstructure relative to the length scale of the subdomains is denoted
by ε. The elasticity tensor for the composite structure is denoted by C ε(x).

The elastic strain associated with the elastic displacement uε is given by eij(u
ε) =

(uε
i,j+u

ε
j,i)/2. The stress free strain in themth material caused by thermal contraction
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(a) Division of Domain Ω (b) General Subdomain Ω` of Ω

Fig. 2.1. Cross-section of Ω and Subdomain Ω`

or expansion due to an imposed temperature change 4T is given by

em =





αm
114T 0 0
0 αm

224T 0
0 0 αm

334T



 ,

where αm
11, α

m
22, α

m
33 denote the coefficients of thermal expansion inside each phase

m = 1, 2, . . . , N . Here 4T is assumed constant across the sample and the piecewise
constant stress free strain inside the composite structure is denoted by eε(x). The
stress inside the structure σε is given by

σε
ij(x) = Cε

ijkl(x) (ekl(u
ε)(x) − eε

kl(x)) . (2.1)

The boundary of the structure Ω is split into two parts, ΓD and ΓN , where
displacement and traction boundary conditions are prescribed. Here uε = U on ΓD

and σεn = g, on ΓN , where n is the outward directed unit normal vector on ΓN . The
prescribed displacement and traction U and g are taken to be square integrable on
ΓD and ΓN , respectively.

The elastic displacement inside the structure is square integrable and has square
integrable derivatives and is the solution of the equilibrium equation

−div
(

Cε
ijkl(x) (ekl(u

ε)(x) − eε
kl(x))

)

= f , (2.2)

where the load f is taken to be square integrable. We interpret (2.2) in the weak
sense, i.e.,

∫

Ω

(

Cε
ijkl(x) (ekl(u

ε)(x) − eε
kl(x))

)

eij(ψ) dx =

∫

Ω

f · ψ dx (2.3)

for every smooth test function ψ that vanishes on the boundary of Ω. The weak formu-
lation (2.3) implicitly accounts for perfect bonding transmission conditions between
material phases. These are given by

σε
|a
n = σε

|b
n and

uε
|a

= uε
|b
. (2.4)

Here, the subscripts a and b indicate the side of the two phase interface on which
quantities are evaluated and n is the unit normal vector to the interface pointing into
phase b. In this paper all equilibrium equations are understood in the weak sense.
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To describe the homogenization theorem, we introduce the indicator functions
χ` of the subdomains Ω`, ` = 1, . . . , L. Here, the indicator function χ` takes the
value one for x in Ω` and zero outside. Inside each subdomain Ω`, we associate a
unit periodic elasticity tensor denoted by C`(y) and a unit periodic stress free strain
denoted by e`(y). Here, y is used to denote points inside the unit period cell Q and
C`(y) = Cm for y inside the mth material, m = 1, . . . , N . Similarly, e`(y) = em for
y inside the mth material, m = 1, . . . , N . Setting

C(x,y) =
L
∑

`=1

χ`(x)C`(y), (2.5)

the elasticity tensor for the composite structure is given by Cε(x) = C(x,x/ε). Simi-
larly, setting

e(x,y) =

L
∑

`=1

χ`(x)e`(y) (2.6)

gives the stress free strain eε(x) = e(x,x/ε).
Next, we introduce the solutions of the periodic cell problems. Let e1, e2, e3 be

an orthogonal system of unit vectors in R3. A basis for the set of constant 3 × 3
strains is given by eij = (ei ⊗ ej + ej ⊗ ei)/2, 1 ≤ i ≤ j ≤ 3. We introduce wij(x,y),
which is Q periodic in the y variable for every x in Ω, and is the solution of

div
(

C(x,y)
(

e(wij)(x,y) + eij
))

= 0, (2.7)

where all derivatives are with respect to the y variable and x appears as a parameter.
The effective elastic tensor is defined by

CE
ijkl(x) =

∫

Q

(

Cijmn(x,y)
(

emn(wkl)(x,y) + eij
mn

))

dy. (2.8)

The effective thermal expansion coefficient is given by

HE
ij (x) =

∫

Q

Cmnop(x,y)
(

eop(w
ij)(x,y) + eij

op

)

emn(x,y)dy. (2.9)

The homogenization of the prestressed multi-phase elastic problem is given by
the following theorem [30].

Theorem 2.1. Homogenization Theorem
For every choice of boundary data and right hand side, uε ⇀ uM weakly in H1(Ω)3

as ε→ 0. The convergence of the local stress is given by

σε = Cε (e(uε) − eε) ⇀ σM = CE
ijklekl(u

M ) −HE
ij , (2.10)

weakly in L2(Ω)3×3.

Moreover, uM is the unique solution to the homogenized boundary value problem

uM = U on ΓD, σMn = g on ΓN and

−div
(

CEe(uM ) −HE
)

= f . (2.11)
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The homogenization theory delivers the convergence of the local average stress
and strain. Indeed, given any subset S contained inside Ω, one has that

1

|S|

∫

S

e(uε)dx →
1

|S|

∫

S

e(uM )dx (2.12)

and

1

|S|

∫

S

σεdx →
1

|S|

∫

S

σMdx. (2.13)

However, in order to characterize failure initiation inside the structure, one needs to
extract information beyond that given by the asymptotics of averaged quantities. In
the next section we present asymptotics that allow for the resolution of the local fields
at the length scale of the microstructure.

3. High fidelity asymptotics for local field assessment. In this section, we
present the asymptotic analysis for recovering the local field behavior inside multiscale
prestressed composite architectures. The asymptotic theory is described in terms
of the solution of auxiliary local boundary value problems. These boundary value
problems are used to build a corrector theory suitable for capturing the multiscale
coupling between the average fields and the local field fluctuations at the length scale
of the microstructure. We prescribe a domain of interest S inside the composite
structure. Here, the boundary of the set S does not intersect the boundary of Ω.
Asymptotic expansions are developed that describe the local stress and strain fields
inside S. It is important to point out that the microstructure contained inside S is
not necessarily periodic. The utility of the expansion is that it applies to domains
S that straddle interfaces separating two or more subdomains containing different
periodic microstructures. The interface between the subdomains need not be straight
or smooth. On the domain S, we introduce the H1

0 (S)3 solutions vij,ε and rε of the
multiscale equilibrium problems defined on S given by

−div
(

Cε(x)(e(vij,ε)(x) + eij)
)

= −div
(

CE(x)eij
)

(3.1)

and

−div (Cε(x)(e(rε)(x) − eε(x))) = div
(

HE(x)
)

. (3.2)

The multiscale problem (3.1) is used to define the corrector tensor P ε given by

P ε(x)eij = e(vij,ε)(x) + eij . (3.3)

Here, the right hand sides of (3.1) and (3.2) record the effects of the interfaces sepa-
rating subdomains containing different periodic microstructures.

The point wise convergence of the elastic stress and strain inside each phase is
given by the following theorem.

Theorem 3.1. Asymptotic expansion
Let χε

m(x) be the indicator function of the mth material phase contained inside S
where χε

m = 1 for points inside the mth phase and zero outside. On passage to a

subsequence if necessary, one has the point wise asymptotics given by

χε
m(x)σε(x) − χε

m(x)Cm
(

P ε(x)e(uM )(x) + e(rε)(x) − eε(x)
)

→ 0,

(3.4)

χε
m(x)e(uε)(x) − χε

m(x)
(

P ε(x)e(uM )(x) + e(rε)(x))
)

→ 0,

(3.5)
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for m = 1, . . . , N . Here the convergence is point wise and holds for almost every x in

S.

When the set of interest is contained inside one of the subdomains, i.e., S ⊂ Ω`

the microstructure is periodic and the field interactions simplify. The point wise
asymptotics can be expressed in terms of auxiliary problems posed over unit cells.
For this case, let r̃ = r̃(y) be the periodic H1(Q)3 solution of

div (C`(y)(e(r̃) − e`(y))) = 0, (3.6)

for y in Q, and let w̃ij = w̃ij(y) be the periodic H1(Q)3 solution of

div
(

C`(y)(e(w̃ij) + eij)
)

= 0, (3.7)

for y in Q.
We extend w̃ij and r̃ by periodicity to R3. The corrector tensor P̃ = P̃ (y) is

given by

P̃ (y)eij = e(w̃ij)(y) + eij (3.8)

and we set P̃ ε(x) = P̃ (x/ε) and r̃ε = εr̃(x/ε). For this case, we note that e(r̃ε)(x) =
e(r̃)(x/ε) The point wise convergence of the elastic stress and strain inside each phase
is given by the following theorem.

Theorem 3.2. Asymptotic expansion for periodic microstructure with prestress
On passage to a subsequence if necessary, the point wise asymptotic behavior is given

by

χε
m(x)σε(x) − χε

m(x)Cm
(

P̃ (x/ε)e(uM )(x) + e(r̃)(x/ε) − eε(x)
)

→ 0,

(3.9)

χε
m(x)e(uε)(x) − χε

m(x)
(

P̃ (x/ε)e(uM )(x) + e(r̃)(x/ε))
)

→ 0,

(3.10)

for m = 1, . . . , N . Here the convergence is point wise and holds for almost every x in

S.

Theorem 3.2 is known at least by experts. For the analogous scalar problem in the
more general setting of oscillating applied forces the corrector results corresponding
to Theorem 3.2 are established in [43]. In the context of Theorem 3.2 the earlier work
of [45] provides formal asymptotic expansions for elastically homogeneous media with
an oscillatory applied force.

It should be emphasized that Theorems 3.1 and 3.2 are presented in the general
setting where the oscillating elastic coefficients are only assumed to be measurable.
Thus one is only able to claim point wise almost every where convergence of the
expansions. In this context the coefficients may correspond to nonsmooth included
phases or other geometries that contain stress or strain singularities. For these cases
there are always points where the convergence is violated.

The proofs of theorems 3.1 and 3.2 are provided in Section 6.

4. Multiscale field assessment inside prestressed fiber reinforced lami-
nates using high fidelity asymptotics. Theorem (3.1) accounts for the effects of
longer length scales due to the variation of microstructure between subdomains. In
the context of fiber reinforced laminates, the domain Ω = ∪L

`=1Ω` can be thought of
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as a stack of plies. In this example, each ply is of uniform thickness and is denoted
by Ω`. We consider the case when the set of interest S is a pillbox straddling the
interface between two adjacent plies Ω`, Ω`+1, see Figure 4.1. Each ply contains a pe-
riodic array of long parallel fibers running the length of the ply. The fiber orientation
is different for each ply. The fibers are separated by a second connected phase called
the matrix material. The elasticity and stress free strain for the matrix material is
given by C1 and e1. To fix ideas, we assume that all fibers have the same elastic
tensor and stress free strain specified by C2 and e2. For this case, the solution vij,ε

of the auxiliary problem (3.1) satisfies

−div
(

C`(x/ε)(e(v
ij,ε)(x) + eij)

)

= 0, for x ∈ S ∩ Ω`

−div
(

C`+1(x/ε)(e(v
ij,ε)(x) + eij)

)

= 0, for x ∈ S ∩ Ω`+1, (4.1)

and on the boundary separating S ∩ Ω` and S ∩ Ω`+1, vij,ε satisfies the transmission
condition

vij,ε
|`

= vij,ε
|`+1

, (4.2)

and

(

C`(x/ε)(e(v
ij,ε)(x) + eij) − CE(x)eij

)

|`
n

=
(

C`+1(x/ε)(e(v
ij,ε)(x) + eij) − CE(x)eij

)

|`+1

n, (4.3)

where n is the normal on the interface pointing into Ω`+1 and the subscripts indicate
the side of the interface on which quantities are evaluated. For this case, the solution
rε of (3.2) satisfies

−div (C`(x/ε)(e(r
ε)(x) − e`(x/ε))) = 0, for x ∈ S ∩ Ω`

−div (C`+1(x/ε)(e(r
ε)(x) − e`+1(x/ε))) = 0, for x ∈ S ∩ Ω`+1, (4.4)

and on the boundary separating S ∩ Ω` and S ∩ Ω`+1, one has the transmission
conditions

rij,ε
|`

= rij,ε
|`+1

(4.5)

and

(

C`(x/ε)(e(r
ε)(x) − e`(x/ε)) +HE(x)

)

|`
n

=
(

C`+1(x/ε)(e(r
ε)(x) − e`(x/ε)) +HE(x)

)

|`+1

n. (4.6)

The point wise asymptotics for the stress σε and strain e(uε) inside the pillbox S
are described by (3.4) and (3.5) and are given in terms of the local solutions of the
transmission problems (4.1 – 4.3) and (4.4 – 4.6). These asymptotics take into account
the effects occurring at longer length scales due to the residual stresses and the elastic
interaction between neighboring plies.

4.1. High fidelity asymptotics and a computational method for field
recovery: a case study. In this section, we consider a symmetric three ply laminate.
Here, the top and bottom plies contain a periodic arrangement of cylindrical fibers
with generators oriented along the x axis (0◦ fiber orientation) and the middle ply
contains a periodic arrangement of cylindrical fibers with generators oriented along



LOCAL ELASTIC STRESS AND STRAIN 9

Fig. 4.1. A domain of interest S containing the interface between two plies.

x

z

Fig. 4.2. One slice of a quarter section of a three ply laminate. The slice is one period thick

along the x axis

the y axis (90◦ fiber orientation). This three ply laminate is referred to as a [0, 90, 0]
laminate. The laminate is made from IM7 Carbon fibers and 5250-4 Epoxy matrix.
The associated elastic properties and coefficients of thermal expansion (CTE) for the
fibers and matrix obtained from [42] are listed in Table 4.1. The fiber volume fraction
of the IM7/5250-4 composite is 60%.

IM7 Fiber 5250-4 Epoxy Matrix
E11 276 GPa 3.45 GPa

E22, E33 27.6 GPa 3.45 GPa
ν12, ν13 0.3 0.35
ν23 0.8 0.35

G12, G13 138 GPa 1.28 GPa
G23 7.67 GPa 1.28 GPa
α11 −0.36 × 10−7/◦ C 46.8 × 10−6/◦ C

α22, α33 5.04 × 10−6/◦ C 46.8 × 10−6/◦ C
Table 4.1

Elastic moduli and CTE for IM7 Fiber and 5250-4 Epoxy Matrix

We consider an infinitely long three ply laminate. The laminate is loaded with
an imposed 1% strain along the x axis and the sides are kept traction free. A direct
numerical simulation is carried out for the [0,90,0] laminate. Here, the 0 degree plies
consist of stacks of 6 fibers through the thickness and twenty of these stacks are are
placed side by side along the y direction. The 90 degree ply consists of stacks of
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six fibers through the thickness and this stack is periodically repeated along the x
direction see, Figure 4.2. In what follows we describe dimensions of length relative
to the length of the period cell for the periodic geometry. With this convention,
the y coordinate ranges from y = 0 at the free edge to y = 10 at the center of the
laminate, see Figure 4.2. In what follows, we will use the results of the direct numerical
simulation to compute the J2 invariant of the local strain inside the 0◦ and 90◦ plies
near the interface. These results will be compared to the J2 invariant of the first two
terms of the asymptotic expansion (3.5) computed over pre-selected subdomains of
interest. Here, the J2 invariant of the local strain tensor is given by

J2(e(u
ε(x))) =

√

3

2

√

|e(uε(x))|2 −
(tr(e(uε(x)))2

3
, (4.7)

where |e(uε(x))|2 =
∑3

i,j=1 (e(uε(x)))
2
ij . Our choice of the J2 invariant for the strain

tensor is motivated by a recently proposed strain invariant failure theory for composite
materials given in [20].

In the following examples, we will take the domain of interest S to lie across the
interface and contain a single fiber cross section in the 0 degree ply above the interface
and a single fiber cross section below the interface inside the 90 degree ply as shown
in Figure 4.3. This choice of S is referred to in Figure 4.4 as an ”Interface Cell”.

In what follows, we start by choosing S next to the free edge with its center
at the coordinates x = 0.5, y = 0.5, z = 0. For this choice we compute the first
two terms of the asymptotic expansion. Then we shift S one period to the right of
the free edge along the y axis and again compute the first two terms. This is done
for y = 1.5, 2.5, . . . , 9.5. For each choice of S, we compute the maximum of the J2

invariant of the sum of the two terms in the high fidelity asymptotic expansion taken
over the upper half of S inside the epoxy in the 0 degree ply. For this computation
we have used e(uM ) evaluated at the upper boundary of the ply interface for y =
0.5, 1.5, 2.5, . . . , 9.5. The associated step function curve is denoted by M 0(y) and is
plotted for 0 < y < 10 and is the third curve from the bottom in Figure 4.4. We
also compute the maximum of the J2 invariant of the sum of the first two terms in
the asymptotic expansion over the lower half of S inside the epoxy phase in the 90
degree ply. Here e(uM ) is evaluated at the lower boundary of the ply interface for
y = 0.5, 1.5, 2.5, . . . , 9.5. The associated step function curve M 90(y) is the fifth curve
up from the bottom plotted in Figure 4.4. The J2 curves derived from the direct
numerical simulation in the 90 degree middle ply and top 0 degree ply are given by
the top curve and the bottom curve in Figure 4.4 respectively. To illustrate how
these curves are computed we express the dependence of J2 on position and write
J2 = J2(x, y, z) where z = 0 is the ply interface and y = 0 corresponds to the free
edge. For x = 0.5 and for each y, (0 < y < 10), the top curve is the graph of M 90

d (y)
which is given by the maximum of J2 inside the epoxy matrix taken over −1 < z < 0
see, Figure 4.2. Here

M90
d (y) = max{J2(0.5, y, z);−1 < z < 0, (0.5, y, z) inside the epoxy} (4.8)

and is plotted for 0 ≤ y ≤ 10. Similarly the the bottom curve M 0
d (y) is the maximum

over 0 < z < 1 of J2(0.5, y, z) inside the epoxy given by

M0
d (y) = max{J2(0.5, y, z); 0 < z < 1, (0.5, y, z) inside the epoxy} (4.9)

and is plotted for 0 ≤ y ≤ 10.
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We start by comparing the M 90
d curve obtained from direct numerical simulation

with the step curve M90. Figure 4.4 shows that the M 90 and M90
d curves coincide up

to about one fiber diameter away from the free edge. The primary reason for their
disagreement is that the M 90

d curve captures the free edge singularity at the fiber
matrix interface in the 90 degree ply, while the value of e(uM ) used for calculating
M90 is never closer than one half period away from the free edge and thus remains
finite. For this case the high fidelity asymptotic analysis compares well with the direct
numerical simulation up to about one fiber diameter away from the free edge.

Next, we compare the direct numerical simulation with the high fidelity expansion
inside the 0 degree ply. The curve M 0 associated with the high fidelity expansion lies
above the curve M0

d associated with the direct numerical simulation in the 0 degree
ply. The M0 curve is seen to recover the local maxima appearing in the M 0

d curve up
to about two periods away from the free edge.

The M0
d and M90

d curves illustrate the penetration of the free edge effects into
the interior of the 0 and 90 degree ply. It is seen that the M 90

d curve is flat after six
periods and the M0

d curve becomes periodic only after seven periods away from the
free edge.

It is pointed out that ε for this problem is taken to be the ratio of the ply thickness
to the fiber period and is given by 1/6. However is anticipated that for this choice of ε
that the error between the asymptotics and direct numerical simulation will increase
for less regular fiber distributions. Moreover it is anticipated that the boundary effects
associated with the free edge would penetrate further into the interior of the laminate
for less regular fiber configurations [6].

For comparison, we also plot the J2 curves associated with the two scale asymp-
totic expansion (3.10) when S is taken to be a period cell lying completely inside
either the 0 degree ply or the 90 degree ply (these are referred to as Ply RVE’s in
Figure 4.4). We start with S next to the free edge with its center at the coordinates
x = 0.5, y = 0.5, z = 0.5 and then compute the maximum value of J2 over the epoxy
phase inside S. Then we repeat this with S shifted to the right for y = 1.5, 2.5, . . . , 9.5.
The associated step function curve is the second curve from the bottom in Figure 4.4.
It is seen from the figure that this curve significantly underestimates M 0

d as given by
the bottom curve in Figure 4.4. The corresponding J2 curve associated with S inside
the 90 degree ply is given by the fourth curve up from the bottom in Figure 4.4. This
curve captures the trend seen in the M 0

d curve until about one fiber diameter from
the free edge.

These examples show the utility of the high fidelity expansions for capturing
trends seen in regions containing rapid variation of local microstructure. It also un-
derscores the importance of choosing the proper domain of interest S for computing
asymptotic expansions inside regions where the microstructure changes abruptly.

5. Bounds on local stress and strain invariants. In this section, we provide
a description of the local field behavior inside regions containing uniform microstruc-
ture, such as the interior of a ply inside a multi-ply laminate. We display upper
bounds on the magnitude of the J1 and J2 invariants of the local stress and strain
fields inside the composite. These bounds are rigorously shown to hold when the
microstructure is sufficiently small relative to the characteristic length scale of the ply
width. These bounds provide for the fast assessment of effects due to prestress inside
multiscale composite architectures containing stress concentrations such as bolt holes.
We illustrate this by computing the strain bounds inside selected plies for multi-ply
fiber reinforced laminates.
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Fig. 4.3. The choice of S used for computation of the high fidelity asymptotic expansion.

Fig. 4.4. Comparison between direct numerical simulation and high fidelity asymptotitcs.

To fix ideas, we consider a ply Ω` inside the laminate containing a fixed periodic
microstructure. The unit periodic elasticity tensor and stress free strain for the mi-
crosturcture inside the `th ply are denoted by C`(y) and η`(y), respectively. Here, we
recall that the J1 invariant of a second order tensor τ is its trace, i.e.,

J1(τ) = tr(τ) =

3
∑

i=1

τii. (5.1)

We now give the point wise bounds on the J1 and J2 stress and strain invariants
inside a ply. Let χm denote the indicator function of the mth phase inside the unit
period cell for the microstructure and we introduce (SJ1)m and (SJ2)m, m = 1, 2,
given by

(SJ1)m(σM ) = sup
y∈Q

J1

(

χm(y)C`(y)(P̃ (y)eM + e(r̃)(y) − η`(y))
)

(5.2)
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and

(SJ2)m(σM ) = sup
y∈Q

J2

(

χm(y)C`(y)(P̃ (y)eM + e(r̃)(y) − η`(y))
)

. (5.3)

The length scale of the microstructure relative to the length scale of the ply is
denoted by ε and the local stress for the laminate inside the ply of interest is denoted
by σε. The indicator function for the mth phase inside the ply is written as χε

m.

Stress bound

Fix δ > 0. Then for almost every x inside the ply, there is an ε0 > 0 such that,
for ε < ε0, one has that

χε
m(x)J1(σ

ε(x)) < (SJ1)m(σM (x)) + δ and

χε
m(x)J2(σ

ε(x)) < (SJ2)m(σM (x)) + δ. (5.4)

We describe the strain bound in terms of (EJ1)m and (EJ2)m, m = 1, 2, given
by

(EJ1)m(eM )) = sup
y∈Q

J1

(

χm(y)(P̃ (y)eM + e(r̃)(y) − η`(y))
)

(5.5)

and

(EJ2)m(eM ) = sup
y∈Q

J2

(

χm(y)(P̃ (y)eM + e(r̃)(y) − η`(y))
)

. (5.6)

Strain bound

Fix δ > 0. Then for almost every x inside the ply, there is an ε0 > 0 such that,
for ε < ε0, one has that

χε
m(x)J1(e(u

ε(x))) < (EJ1)m(eM (x)) + δ and

χε
m(x)J2(e(u

ε(x))) < (EJ2)m(eM (x)) + δ. (5.7)

These bounds are established in Section 6.
It should be emphasized that the stress and strain bounds given here are presented

in the general setting where the oscillating elastic coefficients are only assumed to be
measurable. In this context the coefficients may correspond to nonsmooth included
phases or other singular geometries. For these cases there are physically significant
points where both the local stress and strain fields are infinite for every choice of ε.
It is easily checked that the first term appearing in the upper bounds for the stress
and strain fields is also infinite for every ε and for every point inside the ply for these
cases. Thus the upper bounds on the stress and strain diverge to infinity when the
microstructure supports stress or strain singularities.

In the following examples, we compare the strain bounds (EJ1)1 and (EJ2)1
with the strain invariants J1 and J2 obtained from direct numerical simulation. This
comparison will be made for selected paths taken inside the 0 degree ply in the [0,90,0]
symmetric three ply laminate introduced in Section 4. Here, it is stressed that the
strain bounds hold only asymptotically; however, in the following example we will
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compare them to the results of direct numerical simulation inside fiber reinforced
composite geometries using material properties seen in the applications. We find that
the strain bounds compare well to the direct numerical simulations.

We carry out the comparison by computing the J1 and J2 invariants using a full
numerical simulation along four paths inside the 0 degree ply. The paths are taken 3.0,
2.5, 1.5 and 0.5 fiber diameters above the interface, respectively, and are illustrated
in Figure 5.1. These paths lie inside the matrix phase. The strain bounds (EJ1)1 and
(EJ2)1 inside the matrix phase are also computed along the paths. In the following
figures, the strain bounds (EJ1)1 and (EJ2)1 are given by solid curves and J1 and J2

are given by dashed curves. Comparison of Figures 5.2, 5.4, 5.6, and 5.8 shows that
(EJ1)1 is an upper bound for J1 on all paths except within one fiber diameter of the
free edge along the 0.5 fiber diameter path. It is seen from Figure 5.3 that (EJ2)1 is
an upper bound for J2 along the 3.0 fiber diameter path. However, for paths closer
to the interface, (EJ2)1 is no longer an upper bound (see Figures 5.5, 5.7, and 5.9).
This is due to the effect of the neighboring 90 degree ply on J2 for paths close to
the interface. On the other, hand we recall from Figure 4.4 that the high fidelity
asymptotics developed using the domain of interest S straddling the interface was
able to bound J2 for any path chosen near the interface and up to one fiber diameter
away from the free edge.

We conclude this section by computing the strain bound on J1 inside the matrix
material for a symmetric eight ply laminate containing an open circular hole. The
laminate is made from IM7 fibers and 977-3 matrix. The associated elastic properties
and coefficients of thermal expansion (CTE) for the fibers and matrix obtained from
[20] are listed in Table 5.1. The fiber volume fraction of the IM7/977-3 composite
is 60% and the ∆T used for the prestress is −150◦ C. The plies are stacked from
top to bottom in the following sequence [0◦, 45◦,−45◦, 90◦, 90◦,−45◦, 45◦, 0◦]. Here,
the angles represent the fiber orientation inside each ply. For this example, the ply
thickness is 0.127 mm, and each ply has length 101.6 mm and width 25.4 mm, and
the hole diameter is 6.35 mm (see Figure 5.10). The period cell for the fibers is
11.4 × 10−3mm and the fiber diameters are 10 × 10−3mm. This multiscale structure
contains roughly 1.8 × 106 fibers. From the previous numerical experiments, it was
found that the strain bound held in regions greater than 3.0 fiber diameters from the
ply interface. With this in mind, we will compute upper bounds along the mid plane
of selected plies. Here, the mid plane is at least 5 fiber diameters away from the ply
interface.

IM7 Fiber 977-3 Matrix
E11 271 GPa 3.79 GPa

E22, E33 17.2 GPa 3.79 GPa
ν12, ν13 0.32 0.36
ν23 0.20 0.36

G12, G13 27.6 GPa 1.39 GPa
G23 8.27 GPa 1.39 GPa
α11 −0.33 × 10−6/◦ C 17.7 × 10−6/◦ C

α22, α33 2.55 × 10−6/◦ C 17.7 × 10−6/◦ C
Table 5.1

Elastic moduli and CTE for IM7 Fiber and 977-3 Matrix

We compute (EJ1)1 along the mid plane of the 0◦, 45◦, and 90◦ plies in the
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presence of prestress and without prestress. Figure 5.11 is a contour plot of the strain
bound (EJ1)1 inside the 0◦ ply in the absence of prestress and Figure 5.12 is the bound
in the presence of prestress. Figure 5.13 is a plot of the strain bound (EJ1)1 inside
the 45◦ ply in the absence of prestress and Figure 5.14 is the bound in the presence
of prestress. Figure 5.15 is a plot of the strain bound (EJ1)1 inside the 90◦ ply in
the absence of prestress and Figure 5.16 is the bound in the presence of prestress. It
is clear from the Figures that the strain bounds in the presence of prestress are less
symmetric than the strain bounds without prestress. This phenomenon is an inter
laminar effect and is associated with the anisotropy of the off axis plies being more
pronounced due to additional matrix contraction. These Figures illustrate the use of
the strain bounds for uncovering phenomena due of the effect of prestress inside the
eight ply laminate.

6. Proof of Theorem 3.1. In this section, we establish Theorem 3.1. We note
that Theorem 3.2 holds for the simpler case of periodic microgeometries and its proof
follows from the proof of Theorem 3.1. We point out that Theorem 3.2 is known
at least by experts. For the analogous scalar problem in the more general setting
of oscillating applied forces the corrector results corresponding to Theorem 3.2 are
established in [43].

In what follows, we pass to limits of products of weakly converging sequences
using compensated compactness. In the context of linear elasticity this is expressed
in the following theorem [19].

Theorem 6.1. Div-Curl Theorem for linear elasticity

1. Suppose that vε ⇀ v weakly in H1(S)3,
2. ηε ⇀ η weakly in L2(S)3×3 and

3. −div ηε = f , with f ∈ H−1(S)3.
Then for every test function φ in C∞

0 (S),

lim
ε→0

∫

S

(e(vε) : ηε)φ dx =

∫

S

(e(v) : η)φ dx.

We show that Theorem 3.1 follows from Theorem 6.1 together using the conver-
gence properties of the auxiliary problems (3.1), (3.2). We note that Theorem 3.2
also follows from the same arguments and makes use of the convergence properties of
the auxiliary problems (3.6), (3.7). We record these properties below.

vij,ε → 0, in L2(S)3

P εeij = e(vij,ε) + eij ⇀ eij , weakly in L2(S)3×3,

CεP εeij ⇀ CEeij , weakly in L2(S)3×3, and (6.1)

rε ⇀ 0, in H1
0 (S)3

Cε(e(rε) − eε) ⇀ −HE , weakly in L2(S)3×3. (6.2)

If S ⊂ Ω`, then

εw̃ij(x/ε) → 0, in L2(S)3

P̃ εeij = e(w̃ij)(x/ε) + eij ⇀ eij , weakly in L2(S)3×3,

CεP̃ εeij ⇀ CEeij , weakly in L2(S)3×3, (6.3)
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r̃ε ⇀ 0, in H1(S)3, and

Cε(e(r̃ε) − eε) ⇀ −HE , weakly in L2(S)3×3. (6.4)

The convergence expressed in (6.1) and (6.3) follows from standard arguments, see
[8]. The convergence of the auxilary problems (6.2) and (6.4) needs special treatment
and are derived below. We establish (6.2), noting that (6.4) follows from a similar
argument.

Proof of (6.2).
Standard estimates show that the sequences {rε}ε>0 and Cε(e(rε) − eε) = M ε

are bounded in H1(S)3 and L2(S)3×3, respectively. On passage to subsequences if
necessary, there exist r ∈ H1(S)3 and M ∈ L2(S)3×3 for which

rε ⇀ r weakly in H1(S)3, (6.5)

M ε ⇀M weakly in L2(Ω)3×3, and (6.6)

− div M= div HE . (6.7)

We now show that M = −HE . Given S, consider every subdomain Ω` that
intersects S. For x inside such Ω`, we extend wij(x,y) by periodicity to R3 in the y
variable. Set Φε = εwij(x,x/ε) + eijx and note that

div (Cεe(Φε)) = 0 (6.8)

on R3. For any test function δ in C∞

0 (Ω` ∩ S), the product δΦε is an admissible test
function for the weak formulation (3.2) and it follows that

∫

S

(Cε(x)(e(rε)(x) − eε(x))) : e(δΦε) dx = −

∫

S

HE(x) : e(δΦε) dx.

(6.9)

Expanding δΦε and regrouping terms in (6.9) gives
∫

S

(Cε(x)e(Φε) : e(rε)) δ dx −

∫

S

(Cε(x)e(Φε) : eε) δ dx

+

∫

S

(Cε(x)(e(rε) − eε))∇δΦε dx

= −

∫

S

HE(x) : e(δΦε) dx. (6.10)

Noting that oscillatory periodic functions weakly converge to their averages, [8] gives

Φε ⇀ eijx weakly in H1(Ω` ∩ S)3, (6.11)

Cεe(Φε) ⇀ CEeij weakly in L2(Ω` ∩ S)3×3, and (6.12)

Cεe(Φε) : eε ⇀ HEeij weakly in L2(Ω` ∩ S)3×3. (6.13)

Since (6.5), (6.8), and (6.12) hold, we apply the Div-curl lemma to the first term of
(6.10) and applying (6.13) to the second term of (6.10) and taking limits in other
terms using (6.6) and (6.11) gives

∫

S

(

CEeij : e(r)
)

δ dx −

∫

S

(

HE : eij
)

δ dx

+

∫

S

M∇δeijx dx

= −

∫

S

HE(x) : e(δeijx) dx. (6.14)
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Applying the identity M : e(δeijx) = M∇δeijx +Meijδ and recalling (6.7) gives
∫

S

(

M − CEe(r) +HE
)

eijδ dx = 0, (6.15)

so M = CEe(r) −HE in S. From (6.7), it now follows that div(CEe(r)) = 0 and we
conclude that r = 0 to find that

M = −HE . (6.16)

Last, one recalls that the solution r ∈ H1
0 (S) of div(CEe(r)) = 0 is unique and

it follows that the the whole sequence M ε weakly converges to −HE in S. This
concludes the proof of (6.2).

Theorem 3.1 will be established with the aid of an estimate described below. We
introduce the matrix valued function ϕ defined by

ϕ =

3
∑

i,j=1

ϕij(x)e
ij , (6.17)

where ϕij(x) ∈ C∞(Ω) for every choice of i, j. The estimate is given by
Theorem 6.2. Convergence estimate

Given a set of interest S, then for any open subset ω ⊂⊂ S,

lim sup
ε→0

∫

ω

|e(uε) − (P εϕ+ e(rε)) |2dx ≤
Λ

λ

∫

ω

|
(

e(uM ) − ϕ
)

|2dx. (6.18)

Proof of Theorem 3.1.
It is evident that if eij(u

M ) is in C∞(S), then setting ϕ = e(uM ) in (6.18) gives
the strong convergence

lim
ε→0

∫

ω

|e(uε) −
(

P εe(uM ) + e(rε)
)

|2dx = 0. (6.19)

More generally, one may consider the smooth approximation of e(uM ) in the L2(Ω)3×3

norm denoted by ϕ in C∞(S)3×3 such that

|ϕ− e(uM )|L2(S)3×3 < δ. (6.20)

Applying Cauchy’s inequality gives

|P εe(uM ) − P εϕ|L1(S)3×3

≤ |ϕ− e(uM )|L2(S)3×3

(

∑

kl

|P εekl|L2(S)3×3

)

≤ δK, (6.21)

where K is a positive constant independent of ε. We write

e(uε) −
(

P εe(uM ) + e(rε)
)

= zε
1 + zε

2, (6.22)

where zε
1 = e(uε) − (P εϕ + e(rε)) and zε

2 = P εϕ − P εe(uM ). From (6.18), (6.20),
(6.21), and (6.22), we see that

lim
ε→0

|e(uε) −
(

P εe(uM ) + e(rε)
)

|L1(ω)3×3 < δ(
Λ

λ
+K). (6.23)
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The point wise convergence given in (3.5) of Theorem 3.1 now follows immediately
upon noting that δ can be chosen arbitrarily small.

In order to establish the convergence given by (3.4) of Theorem 3.1, we write

e(uε) = P εe(uM ) + e(rε) + zε
s, (6.24)

where zε
s → 0 in L1(S)3×3. Next, recall that σε = Cε(e(uε) − eε) and substitution of

(6.24) shows that

σε = Cε(P εe(uM ) + e(rε) − eε) + zε
st, (6.25)

where zε
st → 0 in L1(S)3×3 and (3.4) follows.

We now establish Theorem 6.2. To do this, we show for any C∞

0 (S) function φ
that

lim
ε→0

∫

S

φCε (e(uε) − (P εϕ+ e(rε))) : (e(uε) − (P εϕ+ e(rε))) dx

=

∫

S

φCE
(

e(uM ) − ϕ
)

:
(

e(uM ) − ϕ
)

dx. (6.26)

Theorem 6.2 follows from (6.26) since λ ≤ Cε ≤ Λ and, for φ ≥ 0, one has

lim sup
ε→0

λ

∫

S

φ|(e(uε) − (P εϕ+ e(rε)) |2dx

≤

∫

S

φCE
(

e(uM ) − ϕ
)

:
(

e(uM ) − ϕ
)

dx

≤ Λ

∫

S

φ|e(uM ) − ϕ|2dx. (6.27)

To establish (6.26), we start with

∫

S

φCε(x) (e(uε) − (P εϕ+ e(rε))) : (e(uε) − (P εϕ+ e(rε))) dx. (6.28)

Next, we rewrite (6.28) as sums of terms with integrands that satisfy the hypotheses
of Theorem 6.1. In order to see how to rewrite the sum, we list the weakly convergent
quantities with divergence that satisfy the hypotheses Theorem 6.1. These are C εP εϕ,
Cε (e(rε) − eε), and Cε (e(uε) − eε). The weakly convergent displacements satisfying
the hypotheses of Theorem 6.1 are vij,ε + eijx, rε, uε and the associated weakly
convergent strains are given by P εeij , e(rε), and e(uε), respectively.
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Adding and subtracting eε and expanding (6.28) yields the nine terms

∫

S

φCε (e(uε) − eε) : e(uε) dx −

3
∑

i,j=1

∫

S

φϕijC
ε (e(uε) − eε) : P εeij dx

−

∫

S

φCε (e(uε) − eε) : e(rε) dx −

3
∑

i,j=1

∫

S

φϕijC
εP εeij : e(uε) dx

+

3
∑

i,j=1

3
∑

k,l=1

∫

S

φϕijϕklC
εP εeij : P εekl dx +

3
∑

i,j=1

∫

S

φϕijC
εP εeij : e(rε) dx

−

∫

S

φCε (e(rε) − eε) : e(uε) dx +

3
∑

i,j=1

∫

S

φϕijC
ε (e(rε) − eε) : P εeij dx

+

∫

S

φCε (e(rε) − eε) : e(rε) dx. (6.29)

The limit (6.26) follows on passing to the limit in (6.29) and identifying the limit of
each term using Theorem 6.1.

We conclude by establishing the strain bound given in Section 5 and note that
the stress bound follows using similar arguments.
Proof. One rewrites the point wise convergence given by (3.10) as

χε
m(x)e(uε)(x) = χε

m(x)
(

P̃ (x/ε)e(uM )(x) + e(r̃)(x/ε))
)

+ zε
sp(x),

(6.30)

where zsp → 0 for almost every x in S. Substitution of this expansion into the
functions J1 and J2 and an application of the triangle inequality in the expression
corresponding to J2 gives

J1(χ
ε
m(x)e(uε)(x)) ≤ (EJ1)m(e(uM (x))) + J1(z

ε
sp(x)),

J2(χ
ε
m(x)e(uε)(x)) ≤ ((EJ2)m(e(uM (x))) + J2(z

ε
sp(x))

(6.31)

and the bounds follows from the continuity of J1 and J2.
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[5] I. Babuška, B. Andersson, P. J. Smith, and K. Levin, Damage analysis of fiber

composites, Part I: Statistical analysis on fiber scale, Comput. Methods Appl.
Engrg., 172 (1999), pp. 27–77.



20 T. BREITZMAN, R. LIPTON AND E. IARVE
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Fig. 5.1. The 4 different paths inside the 0 degree ply used to compare stress invariants

Fig. 5.2. Comparison of J1 and (EJ1)1 in 0 degree ply 3.0 fiber diameters above the interface.

Fig. 5.3. Comparison of J2 and (EJ2)1 in 0 degree ply 3.0 fiber diameters above the interface.
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Fig. 5.4. Comparison of J1 and (EJ1)1 in 0 degree ply 2.5 fiber diameters above the interface.

Fig. 5.5. Comparison of J2 and (EJ2)1 in 0 degree ply 2.5 fiber diameters above the interface.
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Fig. 5.6. Comparison of J1 and (EJ1)1 in 0 degree ply 1.5 fiber diameters above the interface.

Fig. 5.7. Comparison of J2 and (EJ2)1 in 0 degree ply 1.5 fiber diameters above the interface.
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Fig. 5.8. Comparison of J1 and (EJ1)1 in 0 degree ply 0.5 fiber diameters above the interface.

Fig. 5.9. Comparison of J2 and (EJ2)1 in 0 degree ply 0.5 fiber diameters above the interface.

Fig. 5.10. An open hole eight ply laminate
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Fig. 5.11. Bound on the local strain in the 0 degree ply without prestress

Fig. 5.12. Bound on the local strain in the 0 degree ply with prestress

Fig. 5.13. Bound on the local strain in the 45 degree ply without prestress
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Fig. 5.14. Bound on the local strain in the 45 degree ply with prestress

Fig. 5.15. Bound on the local strain in the 90 degree ply without prestress

Fig. 5.16. Bound on the local strain in the 90 degree ply with prestress


