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Abstract

A methodology is given for the construction of configurations of multi-phase non-
linear dielectric materials with electric fields that have the smallest Lp norm among
all configurations subject to a resource constraint. Examples are given for configura-
tions of two isotropic linear and nonlinear dielectrics with electric fields minimizing
the L2 norm and L4 norm respectively.

Key words: Nonlinear dielectric materials. Configurations.

Correspondence: Prof. Robert P. Lipton,
Department of Mathematics,

Louisiana State University, Baton Rouge, LA 70808 USA
FAX: 225-578-4276 email lipton@math.lsu.edu

Preprint submitted to Elsevier Science 8 November 2002



1 Introduction

Consider a bounded simply connected domain Ω in the plane and prescribe
an electric potential U0 on the boundary ∂Ω. The domain contains N nonlin-
ear dielectric materials and the DC electric potential inside the composite is
denoted by φ with φ = U0 on the boundary. In the ith material the energy
density is given by (γi/p)|∇φ|p. Here γi is the nonlinear susceptibility of the ith

material and p is any positive number greater than unity. For p = 2 the mate-
rial is a linear dielectric. A configuration of these materials in Ω is described
by the piecewise constant susceptibility given by γ(x) =

∑N
i=1 χi(x)γi, where

the indicator function χi(x) equals one in the ith phase and zero outside. The
potential is a solution of

div (γ(x)|∇φ|p−2∇φ) = 0. (1)

By a solution of (1) we mean that φ is continuous on Ω ∪ ∂Ω, p-harmonic
inside each phase, i.e., div (|∇φ|p−2∇φ) = 0 in each phase, and on interfaces
between materials i and j

n · γi|∇φ|p−2∇φi = n · γj|∇φ|p−2∇φj. (2)

Here n is the unit normal pointing into phase j and the subscripts indicate the
side of the interface that a quantity is evaluated on. The electric field inside
the composite is given by E = −∇φ.

We address the problem of finding a configuration of N nonlinear materials
that minimizes the Lp norm of the electric field

∫
Ω |E|pdx. Here a minimizing

configuration is sought over the class of configurations satisfying the resource
constraints

∫
Ω χidx = βi, i = 1, ..., N , with

∑N
i=1 βi = area(Ω). We consider

the class of problems for which p can take any value in 1 < p <∞.

A lower bound on the p norm of the electric field is given by Dirichlet’s
principle which states that among all potentials ψ = U0 on ∂Ω such that∫
Ω |ψ|pdx <∞ and

∫
Ω |∇ψ|pdx <∞ the p norm of the electric field E = −∇ψ

is bounded below by

∫

Ω

|Eu|pdx ≤
∫

Ω

|E|pdx. (3)

where Eu = −∇u with u = U0 on ∂Ω and u is a solution of the p-Laplace
equation

div (|∇u|p−2∇u) = 0. (4)
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Based upon this observation a methodology is given for the construction of
optimal configurations. It is shown here that an optimal configuration is made
by placing each nonlinear material inside subdomains of Ω with boundaries
given by the level lines of the q-harmonic function v that is conjugate to u.
Here 1/p+ 1/q = 1. It is shown that the electric field for these configurations
is precisely Eu. This is rigorously demonstrated for a large class of boundary
data. Examples are given for p = 2 and p = 4.

Related earlier work addresses optimal design problems for the case p = 2
in the presence of a charge density in Ω. There the goal is to minimize the
L2 norm of the difference of the gradient of state and a target electric field.
The problem was proposed in [1] and minimizing sequences of locally layered
configurations were characterized for a Gδ dense set of targets. It was shown
in [1] that for this class of targets only one scale of oscillation would develop
in minimizing sequences of configurations. In [2] and [3] minimizing sequences
made from locally layered materials with a single scale of oscillation were
rigorously identified for all target fields. However this result doesn’t give the
full story as that analysis does not rule out the appearance of several scales of
oscillation in minimizing sequences. This question is answered in [4] (for 2 and
3 dimensional problems) and in [5] (2 dimensional problems) where the explicit
fully relaxed problem formulation is given. They show that there is only one
scale of oscillation for minimizing sequences of locally layered materials for all
choice of targets.

2 Lp minimizing configurations

We show how to choose a configuration of N nonlinear dielectric materials so
that u is also a solution of

div (γ(x)|∇u|p−2∇u) = 0. (5)

It is clear that the electric field for this type of configuration is Eu. For this
reason we call such configurations Lp minimizing configurations.

In what follows it is supposed that the unit tangent t and normal n vectors
are defined almost everywhere on ∂Ω and that the tangential derivative ∂tU0

exists on ∂Ω. The p-harmonic conjugate [6] to u is denoted by v and is the
q-harmonic function inside Ω with 1/q + 1/p = 1 and ∂nv = ∂tU0 on ∂Ω,
where ∂nv is the normal derivative of v on ∂Ω. Here v satisfies the p-Cauchy–
Riemann equations [6] vx = −|∇u|p−2uy and vy = |∇u|p−2ux. It is evident
that the stream lines of u are the equipotential lines of v. Both u and v have
locally Hölder continuous gradients and the zeros of ∇u and ∇v are isolated.
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See [6] and [7] for a complete discussion and references to the literature. Let
n denote the unit normal to an equipotential line of v then it is evident that

n · |∇u|p−2∇u = 0 (6)

on equipotential lines of v.

Now we show how to construct configurations of N isotropic materials for
which u is also a solution of (5). For p 6= 2 we assume that there are no
critical points of u in Ω, i.e. ∇u 6= 0 in Ω. Then it is known [8] that u is real
analytic in Ω. For p = 2 we make no such assumption and note that u is real
analytic in Ω anyway. Thus for p 6= 2 it follows from the p-Cauchy–Riemann
equations that v has no critical values. For p = 2 Sard’s theorem [9] together
with the Cauchy–Riemann equations shows that the set of critical values of v
has measure zero. Let V +

0 and V −0 be the maximum and minimum values of
v. Pick numbers t1, . . . , tN+1 such that t2, . . . , tN are not critical values of v
and t1 = V −0 < t2 < t3 < · · · < tN < tN+1 = V +

0 . The open sets of points in Ω
where ti < v < ti+1 are denoted by {ti < v < ti+1}. The boundaries {v = ti}
are smooth curves.

Construction of Lp minimizing configurations.

Let χ̃i denote the indicator function of the sets {ti < v < ti+1} and put
γ̃(x) =

∑N
i=1 χ̃i(x)γi then div (γ̃(x)|∇u|p−2∇u) = 0.

Proof. Its clear that u is p-harmonic in each phase and continuous across
interfaces. Since material interfaces correspond to the equipotential lines of v
it is evident that the transmission condition (2) follows immediately from (6).

It is noted that there is considerable leeway in the choice of the numbers
t2, ..., tN so there is no unique Lp minimizing configuration.

3 Application to optimal design

In this section the design problem of finding a configuration of N nonlinear
dielectrics that minimizes the Lp norm of the electric field

∫
Ω |E|pdx is ad-

dressed. In what follows we suppose that ∂tU0 exists. For boundary data U0

such that u has no critical points in Ω we have the following result.

Optimal design result. Consider the q-harmonic function v conjugate to
u. One can find numbers t2 < t3 < · · · < tN such that the characteristic
functions χ̃i of the sets {ti < v < ti+1} satisfy the constraints βi =

∫
Ω χ̃idx

and
∑N

i=1 βi = area(Ω). Then a configuration of nonlinear dielectric materials
that supports the electric field with minimum Lp norm among all admissible
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Fig. 1. The level lines of x2 − y2 are given by the dashed curves. The solid curves
are the level lines of 2xy and form the interfaces between different dielectrics.
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Fig. 2. An optimal configuration for minimizing the L2 norm of the electric field.

configurations is constructed by placing the material with susceptibility γi in
the set {ti < v < ti+1} for i = 1, ..N . Moreover the electric field for this design
is precisely the one that minimizes Dirichlet’s principle (3).

Proof. Introduce the distribution function λv(t) = |{v > t}| where {v > t}
is the set of points in Ω where v > t and |{v > t}| is the Lebesgue measure
of {v > t}. Since there are no critical points of u in Ω one sees that there
are no critical points of v and so the function λv(t) is continuous and strictly
decreasing on the interval [V −0 , V

+
0 ]. Appealing to the intermediate value the-

orem we find t2 < t3 < ·· < tN such that λv(ti) = βi + βi+1 + · · · + βN

for i = 2, ...N . For this choice the measure of the sets {ti < v < ti+1} is
λv(ti) − λv(ti+1) = βi. It is clear that the characteristic functions χ̃i of the
sets {ti < v < ti+1} satisfy the constraints βi =

∫
Ω χ̃idx. We now show that

the susceptibility γ̃(x) =
∑N

i=1 χ̃i(x)γi describes an optimal configuration of
nonlinear dielectric materials. Indeed, from the previous section we see that
γ̃(x) satisfies div (γ̃(x)|∇u|p−2∇u) = 0 and optimality follows from Dirichlet’s
principle.
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Fig. 3. The dashed curves are the level lines of u described by (7). The solid curves
are the level lines of the conjugate function v given by (8). These form the interfaces
between different dielectrics.

4 Methodology and Examples

The methodology for finding the optimal configuration is easily summarized.
For given boundary data U0 compute the q-harmonic solution v for which
∂nv = ∂τU0. Then place each nonlinear material inside subdomains with
boundaries given by the equipotentials of v. This method is illustrated in
the following examples.

For the first example the design domain is the rectangle 0.1 < x < 2, −1 < y <
1. The problem is to find an arrangement of three linear dielectric materials
that minimizes the L2 norm of the electric field for a prescribed boundary
potential U0. Here the resource constraints on each dielectric are specified as
follows: 16.15% of the rectangle is occupied by material 1, 68.08% is occupied
by material 2 and 15.77% is occupied by material 3. The boundary data U0 is
given by the trace of the harmonic function x2 − y2 on the boundary of the
rectangle. It is clear from the methodology that an optimal design is obtained
by placing material inside the level lines of the function 2xy, see Fig. 1. The
optimal design is given in Fig. 2. It is important to note that this design is
optimal for any choice of the dielectric constants provided that they are all
positive.

The second design problem is to find a configuration of four nonlinear dielec-
tric materials with susceptibilities γi, i = 1, .., 4 and local energy densities
(γi/4)|∇φ|4, that minimizes the L4 norm of the electric field for a prescribed
boundary potential U0. Here the design domain is the rectangle 0.1 < x < 2,
−0.8 < y < 0.8. The boundary data U0 is given by the trace of the 4-harmonic
function u chosen from ‘the quasi-radial zoo’ (see [6], [7] and [10]). Here u is
given by

u = r(1/3) exp(θ/3), (7)
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Fig. 4. An optimal configuration for minimizing the L4 norm of the electric field.

where r =
√
x2 + y2 and θ = arctan y/x. An optimal design is obtained by

placing material inside the level lines of the 4/3-harmonic function v conjugate
to u given by

v = (2/27)r−1 exp(θ), (8)

see Fig. 3. The optimal design is given in Fig. 4. This design supports an
electric field that is a minimizer for Dirichlet’s principle (3) for p = 4 with U0

prescribed as above.
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