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Abstract. A functional with both bulk and interfacial surface energy is considered. It corre-
sponds to the energy dissipated inside a two-phase electrical conductor in the presence of an electrical
contact resistance at the two-phase interface. The effect of embedding a highly conducting particle
into a matrix of lesser conductivity is investigated. We find the criterion that determines when the
increase in surface energy matches or exceeds the reduction in bulk energy associated with the par-
ticle. This criterion is general and applies to any particle with Lipschitz continuous boundary. It is
given in terms of the of the second Stekloff eigenvalue of the particle. This result provides the means
for selecting energy-minimizing configurations.
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1. Introduction. We consider a suspension of electrically conducting particles
embedded in a matrix with a lower electrical conductivity. The two-phase conductor
fills out a domain Ω ⊂ R3 with Lipschitz continuous boundary ∂Ω. The electric
conductivity tensor associated with the particle is denoted by σr and that of the
matrix by σm. Here, both conductors are assumed anisotropic, and σr, σm are given
by 3 × 3 symmetric, positive definite matrices. The tensors satisfy the inequality
σr > σm in the sense of quadratic forms. We suppose that there is an interfacial
contact resistance between the two phases. The contact resistance is characterized by
a scalar β with dimensions of conductivity per unit length.

The region occupied by the better conductor is denoted by Ar, and the region
occupied by the matrix is denoted by Am. The interface separating them is assumed
Lipschitz continuous and is denoted by Γ and Ω = Ar ∪ Am ∪ Γ. The resistivity
tensor inside the composite is described by σ−1(x) = σ−1

r χAr + σ−1
m (1− χAr ), where

χAr equals one in Ar and zero otherwise. For a prescribed current g ∈ H−1/2(∂Ω),
such that

∫
∂Ω gds = 0, the thermal energy dissipated inside the composite is given by

E(Ar, g), where

E(Ar, g) = min{C(Ar, j) : j ∈ L2(Ω)3,divj = 0, j · n = g on ∂Ω}(1.1)

and

C(Ar, j) =
∫

Ω
σ−1(x) j · jdx+ β−1

∫
Γ
(j · n)2ds.(1.2)
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Here div j = 0 holds in the sense of distributions, ds is the element of surface area, and
the vector n is the unit normal pointing into the matrix phase. The first term of the
functional C(Ar, j) is associated with bulk energy dissipation, while the second term
gives the energy dissipation at the two-phase interface. The minimizer jAr is precisely
the current in the composite and is related to the potential uAr by the constituitive
law: jAr = σ(x)∇uAr and

div(σ(x)∇uAr ) = 0 in Ar ∪Am.(1.3)

Across the interface one has

[jAr · n] = 0 on Γ,(1.4)

and

jAr · n|2 = −β[uAr ] on Γ, σm∇uAr · n = g on ∂Ω.(1.5)

Here uAr ∈ H1(Ω\Γ) and [uAr ] = uAr |2 − uAr |1 , where the subscripts indicate the
side of the interface where the trace is taken. The requirement

∫
∂Ω gds = 0 is the

solvability condition for the equation of state, and the potential uAr is determined
uniquely up to a constant. To expedite the presentation we denote the subspace of
all elements g ∈ H−1/2(∂Ω) such that

∫
∂Ω gds = 0 by H−1/2(∂Ω) \R.

The replacement of a region of matrix denoted by “Σ” with material of better
conductivity amounts to a nonlocal perturbation of the functional C(Ar, j). The
region Σ is assumed to be compactly contained within the matrix (i.e., Σ ⊂ Am and
∂Σ ∩ ∂Am = ∅). The perturbed functional is written as

C(Ar ∪ Σ, j) =
∫

Ω
σ̃−1(x) j · jdx+ β−1

∫
Γ∪∂Σ

(j · n)2ds,(1.6)

where ∂Σ is the reinforcement (or particle) boundary and

σ̃−1(x) = σ−1
r χAr∪Σ + σ−1

m (1− χAr∪Σ).(1.7)

In this article we present the geometric criterion that determines when effects due
to surface energy overcome the benefits of a highly conducting particle. This criterion
is general and applies to any particle with Lipschitz continuous boundary. In order
to give the criterion, we introduce the 3× 3 symmetric matrix Rcr given by

Rcr = β−1(σ−1
m − σ−1

r )
−1
.(1.8)

Here each element of Rcr has dimensions of length. This tensor provides a mea-
sure of the relative magnitude of the interfacial barrier resistance with respect to the
mismatch between the resistivity tensors of the matrix and particle. For a given par-
ticle occupying the set “Σ,” the geometric parameter of interest is its second Stekloff
eigenvalue ρ2. The second Stekloff eigenvalue has dimensions of conductivity per unit
length and we write ρ2(Σ, σr) to indicate its dependence on the conductivity and ge-
ometry of the particle. When Σ has Lipschitz continuous boundary the variational
formulation for the second Stekloff eigenvalue is given by

ρ2(Σ, σr) = min
div(σr∇ϕ)=0

∫
∂Σ(σr∇ϕ · n)2ds∫
Σ σr∇ϕ · ∇ϕdx

;(1.9)



ENERGY DISSIPATION INEQUALITIES 675

cf. Kuttler and Sigillito [9] and Alessandrini and Magnanini [1]. Equality in (1.9) holds
for the second Stekloff eigenfunction ϕ2, where div (σr∇ϕ2) = 0 in Σ,

∫
∂Σ ϕ2ds = 0,

and

σr∇ϕ2 · n = ρ2(Σ, σr)ϕ2 on ∂Σ.(1.10)

The study of this eigenvalue problem was initiated in the work of Stekloff [17]. It is
evident that the second Stekloff eigenvalue and boundary traces of the Stekloff eigen-
function correspond to the first nonzero eigenvalue and eigenfunction of the Dirichlet
to Neumann map on ∂Σ.

Let E(Ar ∪ Σ, g) denote the associated energy dissipation obtained by replacing
a region Σ compactly contained inside Am with the better conductor. It is given by

E(Ar ∪ Σ, g) = min{C(Ar ∪ Σ, j) : j ∈ L2(Ω)3,div j = 0, j · n = g on ∂Ω}(1.11)

We state the following theorem.
THEOREM 1.1 (energy dissipation inequality). Let Σ be a set with Lipschitz con-

tinuous boundary that is compactly contained in Am. If ρ2(Σ, σr) satisfies

R−1
cr ≤ σ−1

r ρ2(Σ, σr),(1.12)

then

E(Ar ∪ Σ, g) ≥ E(Ar, g)(1.13)

for all g ∈ H−1/2(∂Ω) \R.
Here (1.12) holds in the sense of quadratic forms. No assumptions on the topo-

logical nature of the particle domain Σ is made. Indeed it can be a disjoint union of
multiply-connected components. The proof of this theorem is provided in section 2.
We emphasize that (1.13) holds for every current g ∈ H−1/2(∂Ω) \R.

When the particle is made from an isotropic conductor, one can readily compute
ρ2 for spheres and rectangular fibers; cf. Kuttler and Sigillito [9]. For starlike domains
and domains with smooth boundary, isoperimetric inequalities bounding ρ2 from be-
low have been obtained in the work of Payne [15], Bramble and Payne [2]: see also
the review article of Payne [16]. These observations are applied in section 3, where
heat dissipation inequalities are given in terms of the physical dimensions of the re-
inforcement. Such size effect inequalities predict the existence of a critical particle
dimension below which the particle will no longer reduce the total heat dissipated
inside the composite. These results show that the size of the domain Ω must be taken
into consideration. Indeed, if the domain is “too thin,” then the particle will have to
have dimensions below the critical value in order to fit inside it. For such domains,
the addition of highly conducting particles will not reduce the energy.

Theorem 1.1 can be applied to problems of energy minimization over various
classes of configurations. We consider mixtures of two isotropically conducting mate-
rials. For this case, the particle and matrix phases have scalar conductivities and we
continue to denote them as σr and σm, respectively, where σr > σm. The admissible
class is chosen to be all suspensions of spheres of conductivity σr suspended in a ma-
trix of σm. Here we allow the suspension to contain spheres of different radii. This
class of suspensions is referred to as the class of polydisperse suspensions of spheres.
We assume that each suspension consists of a finite number of spheres and that the
spheres do not intersect. It is emphasized that no lower bound is placed on the size
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of the spheres appearing in the suspension. We suppose that the total amount of
good conductor occupies no more than a prescribed volume fraction θr of the domain
denoted by Ω. Theorem 4.1 shows that one needs only to consider suspensions of
spheres with radii greater than or equal to Rcr = β−1(σ−1

m − σ−1
r )−1 when looking

for energy-minimizing configurations. This result rules out the appearance of fine
scale mixtures of spheres (i.e., minimizing sequences of suspensions made with pro-
gressively smaller spheres). An existence proof of optimal designs within this class
follows from a suitable Poincaré inequality together with the theory of Chenais [3],
[4] for shape optimization problems over a restricted class of Lipschitz domains. This
topic is pursued elsewhere and will appear in [10]. These results are in striking con-
trast to what is seen when there is perfect bonding between the two conductors. For
this situation it is often the case that no optimal design exists. Instead, minimizing
sequences of designs exhibit regions consisting of progressively finer mixtures of the
two conductors; see Lurie and Cherkaev [13] and Murat and Tartar [14].

More generally, we consider Lipschitz domains Ar of good conductor compactly
contained within the design domain Ω. As before, we place no constraints on the
topological nature of the reinforcing set Ar. We show, subject to the resource con-
straint meas(Ar) ≤ θr meas(Ω), that all energy minimizing configurations lie within
a subclass of domains determined by bounds on ρ2(Ar, σr): see Theorem 4.2.

2. Energy dissipation inequalities. In this section we establish Theorem 1.1.
For any g ∈ H−1/2(∂Ω) \R we write the difference ∆E = E(Ar ∪Σ, g)−E(Ar, g)

as

∆E = C(Ar, j̃)− C(Ar, ĵ) +D(Σ, j̃),(2.14)

where j̃ = argmin{C(Ar ∪ Σ, j)}, ĵ = argmin{C(Ar, j)}, and D(Σ, j̃) is given by

D(Σ, j̃) = β−1
{∫

∂Σ
(j̃ · n)2ds−

∫
Σ
β(σ−1

m − σ−1
r )j̃ · j̃dx

}
.(2.15)

Noting that the field j̃ is an admissible trial for the variational principle (1.1), we
have

C(Ar, j̃)− C(Ar, ĵ) ≥ 0.(2.16)

Thus

∆E ≥ D(Σ, j̃).(2.17)

Now, the equations of state for the potential ũ ∈ H1(Ω\(Γ ∪ ∂Σ)) imply that j̃ =
σr∇ũ in Σ, [σ∇ũ · n] = 0 on ∂Σ, and j̃ · n|2 = σr∇ũ · n|2 on ∂Σ. Thus from (2.15)
and (2.17) we obtain

∆E ≥ β−1
{∫

∂Σ
(σr∇ũ · n)2ds−

∫
Σ
β(σ−1

m − σ−1
r )σr∇ũ · σr∇ũdx

}
.(2.18)

From (1.9), it follows that∫
∂Σ

(σr∇ϕ · n)2ds− ρ2(Σ, σr)
∫

Σ
σr∇ϕ · ∇ϕdx ≥ 0(2.19)

for all ϕ ∈ H3/2(Σ) such that div(σr∇ϕ) = 0 in Σ.
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Comparing the right-hand side of (2.18) with (2.19), we discover that

∆E ≥ 0(2.20)

for

σrβ(σ−1
m − σ−1

r )σr ≤ σrρ2(Σ, σr),(2.21)

and the theorem follows.
We observe that strict inequality in (2.20) follows from strict inequality in (2.21),

provided that ∇ũ is not identically equal to zero on Σ.

3. The second Stekloff eigenvalue for simple shapes and size effects.
The second Stekloff eigenvalue for a sphere of radius a filled with isotropic conductor
σr is given by ρ2 = σr/a. It follows immediately from Theorem 1.1 that if both
conducting phases are isotropic and if Σ is a sphere of radius a, then we have the
following theorem.

THEOREM 3.1 (size effect for spheres). For any current flux g ∈ H−1/2(∂Ω) \R,

E(Ar ∪ Σ, g) ≥ E(Ar, g)(3.22)

if

a ≤ Rcr = β−1(σ−1
m − σ−1

r )−1.(3.23)

Other size-effect theorems have been obtained in the context of effective properties
for isotropic suspensions of isotropically conducting spheres in an isotropic matrix. In
that context the results have focused on critical radii for monodisperse suspensions of
spheres; see Lipton and Vernescu [11]. Here the critical radius is precisely Rcr and is
that for which the conductivity of the composite equals that of the matrix.

Results involving various averages of sphere radii have been found in the context
of isotropic polydisperse suspensions of spheres; see Lipton and Vernescu [12]. There
it is shown that if the harmonic mean of the sphere radii lies above Rcr, then the
effective conductivity is greater than the matrix conductivity. Moreover, the effective
conductivity lies below that of the matrix when the arithmetic mean of the radii lies
below Rcr.

For size effects in the context of isotropic dilute suspensions of spheres, see Chiew
and Glandt [5]. Prediction of size effects for isotropic monodisperse suspensions of
spheres, by way of micromodels such as the effective medium theory and differential
effective medium theory, can be found in the work of Every, Tzou, Hasselman, and
Raj [7], Hasselman and Johnson [8], and Davis and Artz [6].

More generally, we consider starlike inclusions Σ filled with isotropic conductor
σr embedded in an isotropic matrix with conductivity σm. Fixing the origin inside
Σ, we denote by hm the minimum distance from the origin to a tangent plane on ∂Σ.
The maximum and minimum distance from the origin to ∂Σ are denoted by rM and
rm, respectively. For such shapes, Bramble and Payne [2] show

σ−1
r ρ2(Σ, σr) ≥

1
rM

[(
rm
rM

)2
hm
rM

]
.(3.24)

It is evident from (3.24) and Theorem 1.1 that we have the following size effect
theorem for starlike reinforcements.
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THEOREM 3.2 (size effect theorem for starlike particles). If the reinforcement Σ is
starlike with geometric parameters rm, rM , and hm, then for any g ∈ H−1/2(∂Ω) \R,
we have

E(Ar ∪ Σ, g) ≥ E(Ar, g)(3.25)

if (
1
rM

[(
rm
rM

)2
hm
rM

])−1

≤ Rcr.(3.26)

To fix ideas we apply this theorem to an ellipsoidal particle. Here we suppose that
the half-lengths of the major and minor axes are specified by a and c, respectively.
For this case Theorem 3.2 implies the following corollary.

COROLLARY 3.3 (size effect theorem for ellipsoidal particles). Given an ellipsoidal
particle Σ with major and minor axes specified by a and c, respectively, then for any
current flux g ∈ H−1/2(∂Ω) \R

E(Ar ∪ Σ, g) ≥ E(Ar, g)(3.27)

if

a
(a
c

)3
≤ Rcr.(3.28)

We consider an ellipsoidal inclusion such that c = a(1 − λ) for 0 < λ < 1. It
follows from the corollary that the introduction of an ellipsoidal inclusion will not
lower the energy dissipated inside the composite when a lies below Rcr(1− λ)3.

4. Energy minimizing configurations. We consider the problem of minimiz-
ing the thermal energy dissipation over the class of polydisperse suspensions of spheres
of good conductor immersed in a matrix of lesser conductivity. The matrix and spheres
are made from isotropically conducting material with conductivities specified by σm
and σr, respectively. Here the suspensions consist of a finite number of noninter-
secting spheres and we assume no lower bound on the sphere radii. Denoting the
ith sphere by Bi, we write Ar = ∪Bi. We suppose that the suspension takes up no
more than a prescribed volume fraction θr of the total composite; i.e., meas(Ar) ≤ θr
meas(Ω). We denote this class of suspensions by Cθr . We consider the subclass SCθr
of Cθr , defined to be all suspensions with minimum sphere radii greater than or equal
to Rcr. For a prescribed heat flux g ∈ H−1/2(∂Ω) \ R on the boundary, we consider
the problem

min{E(Ar, g) : Ar ∈ Cθr}.(4.29)

Theorem 4.1 follows from Theorem 3.1.
THEOREM 4.1. If a minimizer of problem (4.1) exists, then it can be found in the

class SCθr or Ar = ∅. Moreover, if Ω has dimensions for which SCθr is empty, then
the minimum energy dissipation is given by E(∅, g).

Proof. We consider any suspension in the class Cθr . If there exist spheres of radius
less than Rcr, then Theorem 3.1 shows that there is no advantage to keeping them
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in the suspension. When SCθr is empty, we see that no reinforcement is needed, and
the minimum is attained for Ar = ∅.

Next we consider energy minimization over a wide class of particle configurations.
We suppose that σm and σr are anisotropic and let CLθr be the class of Lipschitz
continuous sets Ar compactly contained inside Ω for which meas(Ar) ≤ θr meas(Ω).
Here we assume that Ar is the union of one or more components and we make no
assumption on the topological nature of each component. For a given reinforcement
set Ar, we denote its ith component by Air. The subclass SCLθr of CLθr is defined to
be all Ar ∈ CLθr for which every component Air satisfies

σ−1
r ρ2(Air, σr) ≤ R−1

cr .(4.30)

For g ∈ H−1/2(∂Ω) \R we consider the problem

min{E(Ar, g) : Ar ∈ CLθr}.(4.31)

Theorem 4.2 follows immediately from Theorem 1.1.
THEOREM 4.2. If a minimizer of problem (4.3) exists, then it can be found in

SCLθr or Ar = ∅. Moreover, if Ω has dimensions for which SCLθr is empty, then the
minimum energy dissipation is given by E(∅, g).

5. Conclusions. The second Stekloff eigenvalue associated with the reinforce-
ment phase is shown to be a basic tool for the study of nonlocal perturbations of
functionals with bulk and surface energies associated with imperfectly bonded com-
posite conductors. The associated energy dissipation inequalities establish a means
for selecting energy minimizing configurations. For the problem treated in section 4,
it is found that fine scale oscillations are rendered superfluous due to the electrical
contact resistance associated with the interface.
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