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Abstract A simple nonlocal field theory of peridy-1

namic type is applied to model brittle fracture. The2

kinetic relation for the crack tip velocity given by Lin-3

ear Elastic Fracture Mechanics (LEFM) is recovered4

directly from the nonlocal dynamics, this is seen both5

theoretically and in simulations. An explicit formula6

for the change of internal energy inside a neighbor-7

hood enclosing the crack tip is found for the nonlocal8

model and applied to LEFM.9

Keywords Fracture · Peridynamics · LEFM · Fracture10

toughness · Stress intensity · Local power balance11

1 Introduction12

The fracture of solids can be viewed as a collective13

interaction across length scales. Application of suffi-14

cient stress or strain to a brittle material breaks atom-15

istic bonds leading to fracture at macroscopic scales.16

This material is based upon work supported by the U. S. Army

Research Laboratory and the U. S. Army Research Office under

contract/grant number W911NF1610456.
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78712, USA e-mail: pjha@utexas.edu

R. P. Lipton (B)

Department of Mathematics and Center for Computation and

Technology, Louisiana State University, Baton Rouge, LA

70803, USA e-mail: lipton@lsu.edu

The appeal of a nonlocal fracture theory like peridy- 17

namics Silling (2000), Silling et al. (2007) is that frac- 18

ture is captured as an emergent phenomenon. At the 19

same time such a theory needs to recover the estab- 120

lished theory of dynamic fracture mechanics described 21

in Freund (1990), Ravi-Chandar (2004), Anderson 22

(2005), Slepian (2002) as a limiting case. Motivated 23

by these observations we consider a nonlocal peridy- 24

namic model (cohesive dynamics) proposed in Lipton 25

(2014, 2016). The length scale of nonlocal interaction 26

between any material point and its neighbors is called 27

the horizon. Here the force strain relation between two 28

points is linear elastic for small strains, softens under 29

sufficiently large strain and ultimately becomes zero, 30

see Fig. 2. In this nonlocal model displacement gradi- 31

ents can become steep and localize onto thin regions, 32

see Jha and Lipton (2020). This model is used to show 33

the kinetic relation for the velocity of the crack tip given 34

by LEFM Freund (1990) follows in the limit of vanish- 35

ing horizon. 36

In this paper the kinetic relation of LEFM is recov- 37

ered from the nonlocal model in two different ways. 38

The first approach to recovering the kinetic relation 39

is to note that the same equation of motion applies 40

everywhere in the body for the nonlocal model. We 41

use this to show that local power balance is given by 42

the stationarity in time of the internal energy of a small 43

domain containing the crack tip. The change in internal 44

energy is shown to be the difference between the elas- 45

tic energy flowing into the crack and the kinetic energy 46
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and stress work flux flowing into the domain, which is47

given by formula (18). To leading order the stress work48

flux is precisely the rate of energy needed to create49

new surface (21). These results are obtained directly50

and exclusively from the dynamics governed by the51

nonlocal Cauchy equations of motion for a continuum52

body. This is the explicit connection between the non-53

local Cauchy equations of motion derived from double54

well potentials and the energy rate required to make55

new surface. For remote boundary loading we apply56

energy balance and pass to the local limit to recover57

the celebrated kinetic relation for the modern the-58

ory of dynamic fracture mechanics articulated in Fre-59

und (1990), Ravi-Chandar (2004), Anderson (2005),60

Slepian (2002), see 4.1. Next it is shown that local61

power balance must hold for the nonlocal model when62

the displacement field is translation invariant inside a63

neighborhood of the crack (see Sect. 4.2). We pass to64

the limit of vanishing horizon to recover that the same65

holds true for LEFM. As a second approach we develop66

a nonlocal dynamic J integral and apply Mott’s hypoth-67

esis on energy balance to a small region surrounding68

the crack tip. This is done in Sect. 4.3. The kinetic69

relation of LFEM is then obtained from the nonlocal70

model by passing the limit of vanishing nonlocality.71

Here it is pointed out that the approach of Sect. 4.1 is72

self contained and follows exclusively from the nonlo-73

cal Cauchy equation of motion. On the other hand the74

approach of Sect. 4.3 follows the classic one Freund75

(1990) and uses the nonlocal model to only compute76

the flow of elastic energy into the crack tip.77

Next we provide a computational example to illus-78

trate that power balance holds in the neighborhood of79

the crack tip using the nonlocal model. The fracture80

toughness Gc, density, and elastic modulus of the mate-81

rial are prescribed. The numerical simulation using the82

nonlocal model is carried out for a single edge notch83

specimen of finite width and length. The simulation84

delivers a mode I crack traveling with constant veloc-85

ity at roughly half of the Rayleigh wave speed. This86

simulation is consistent with the experimental results87

reported in Goldman et al. (2010). The change in inter-88

nal energy inside a small neighborhood is calculated89

using (18) and is zero, i.e., power balance holds for90

a dynamic crack traveling at constant velocity V . The91

elastic energy flowing into a small neighborhood of the92

crack tip is F and the power balance inside a neighbor-93

hood of diameter δ is of the form 94

Gc ≈
F

V
. (1) 95

Here ≈ indicates agreement to leading order in δ. 96

This demonstrates that the energy released per unit 97

length during crack growth at constant velocity is equal 98

to the elastic energy flowing into the crack tip (see 99

Sect. 5). It is important to note that the power balance 100

(1) emerges through simulation and calculation using 101

(18) as opposed to being independently postulated on 102

physical grounds. In other words local power balance 103

is a consequence of the nonlocal dynamics. The simu- 104

lation and calculation are described in Sect. 5. 105

The paper is organized as follows: The nonlocal 106

model of peridynamic type is presented in Sect. 2. 107

Sect. 3 describes the fracture toughness and elastic 108

properties associated with the nonlocal model. The 109

main results given by the local energy balance and the 110

recovery of the kinetic relation for LEFM are presented 111

in 4. For clarity that we postpone the derivations - cal- 112

culations for later (see Sects. 6 and 7 ) and present 113

simulations that emphasize the local energy balance in 114

Sect. 5. Section 6 calculates the energy flow into the 115

crack tip for the nonlocal model. Section 7 explicitly 116

shows how the stress work flowing into the crack tip 117

corresponds to the power required to create new frac- 118

ture surface. The results are summarized in Sect. 8. 119

2 Nonlocal modeling 120

The appeal of nonlocal peridynamic models is that frac- 121

ture appears as an emergent phenomena generated by 122

the underlying field theory eliminating the need for 123

supplemental kinetic relations describing crack growth. 124

The deformation field inside the body for points x at 125

time t is written u(x, t). The peridynamic model is 126

described simply by the balance of linear momentum 127

of the form 128

ρut t (x, t) =
∫

Hǫ(x)

f ( y, x) d y + b(x, t) (2) 129

where Hǫ(x) is a neighborhood of x, ρ is the density, 130

b is the body force density field, and f is a material- 131

dependent constitutive law that represents the force 132

density that a point y inside the neighborhood exerts 133

on x as a result of the deformation field. The radius ǫ 134

of the neighborhood is referred to as the horizon. Here 135

all points satisfy the same basic field equations (2). 136
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Classic kinetic relations from double well peridynamic model

Fig. 1 Single-edge-notch

D

This approach to fracture modeling was introduced in137

Silling (2000) and Silling et al. (2007).138

We work with a class of peridynamic models with139

nonlocal forces derived from double well potentials.140

See Lipton (2014), Lipton (2016). The term double well141

describes the force potential between two points. One142

of the wells is degenerate and appears at infinity while143

the other is at zero strain. For small strains the nonlocal144

force is linearly elastic but for larger strains the force145

begins to soften and then approaches zero after reaching146

a critical strain. The associated nonlocal dynamics is147

called cohesive dynamics. We consider a single edge148

notch specimen as given in Fig. 1 in plane stress.149

In this treatment the displacement field u : D ×150

[0, T ] → R
2 is small compared to the size of the spec-151

imen D and the deformed configuration is the same as152

the reference configuration. We have u = u(x, t) as153

a function of space and time but will suppress the x154

dependence when convenient and write u(t). The ten-155

sile strain S between two points x, y in D along the156

direction e y−x is defined as157

S( y, x, u(t)) =
u( y, t) − u(x, t)

| y − x|
· e y−x, (3)158

159

where e y−x = y−x
| y−x| is a unit vector and “·” is the dot160

product.161

In the double well model the force acting between162

material points x and y is initially elastic and then soft-163

ens and decays to zero as the strain between points164

increases, see Fig. 2. The critical strain Sc > 0 for165

which the force begins to soften is given by166

Sc =
r c

√
| y − x|

, (4)167

and S+ is the strain at which the force goes to zero168

S+ =
r+

√
| y − x|

. (5)169

rc−rc
r+−r+

r

g′(r)

Fig. 2 Cohesive force. The force goes smoothly to zero at ±r+

The nonlocal force is defined in terms of a double 170

well potential. The potential is a function of the strain 171

and is defined for all x, y in D by 172

W
ǫ(S( y, x, u(t))) = J ǫ(| y − x|)

1

ǫ3ω2| y − x|
173

g(
√

| y − x|S( y, x, u(t))) (6) 174

where Wǫ(S( y, x, u(t))) is the pairwise force poten- 175

tial per unit length between two points x and y. It is 176

described in terms of its potential function g, given by 177

g(r) = h(r2) (7) 178

where h is concave. Here ω2 is the area of the unit disk 179

and ǫ2ω2 is the area of the horizonHǫ(x). The influence 180

function J ǫ(| y − x|) is a measure of the influence that 181

the point y has on x. Only points inside the horizon 182

can influence x so J ǫ(| y − x|) nonzero for | y − x| < 183

ǫ and zero otherwise. We take J ǫ to be of the form: 184

J ǫ(| y − x|) = J (
| y−x|

ǫ
) with J (r) = 0 for r ≥ 1 and 185

0 ≤ J (r) ≤ M < ∞ for r < 1. 186

The displacement field u(x, t) evolves according to 187

a nonlocal version of Cauchy’s equations of motion for 188

a continuum body 189

ρ üǫ(x, t) = L
ǫ(uǫ)(x, t) + b(x, t), for x ∈ D. (8) 190

Here Lǫ(uǫ) is 191

L
ǫ(uǫ) =

∫

Hǫ(x)

f ǫ( y, x) d y (9) 192

193

and f ǫ(x, y) is given by 194

f ǫ(x, y) 195

= 2∂SW
ǫ(S( y, x, uǫ(t)))e y−x, (10) 196

197
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x2 = 0

Centerline

D

Fig. 3 Failure zone centerline

where198

∂SW
ǫ(S( y, x, uǫ(t)))199

=
1

ǫ3ω2

J ǫ(| y − x|)
| y − x|

∂Sg(
√

| y − x|S( y, x, uǫ(t))).

(11)

200

201

The dynamics is complemented with the initial data202

uǫ(x, 0) = u0(x), ∂t u
ǫ(x, 0) = v0(x), (12)203

204

and the appropriate traction and Dirichlet boundary205

conditions described in Sect. 5.206

2.1 Failure Zone - Process Zone207

The failure zone represents the crack in the nonlocal208

model. It is characterized by the failure zone center-209

line. The failure zone centerline starts at the notch and210

propagates into the interior of the specimen. The force211

between two points x and y separated by the failure212

zone centerline is zero. The centerline is shown in Fig. 3213

and the failure zone is the grey region in Fig. 4. For the214

boundary conditions chosen here failure is in tension215

and confined to a neighborhood of the x2 = 0 axis of216

width 2ǫ. Just in front of the failure zone is the pro-217

cess zone where the force between two points x and218

y on either side of the x2 = 0 axis is decreasing with219

increasing strain. At the leading edge of the crack one220

sees force softening between points x and y and as221

the crack centerline moves forward passing between x222

and y the force between x and y decreases to zero, see223

Fig. 4. It needs to be stressed the failure zone and pro-224

cess zone emerge from the nonlocal dynamics and are225

not prescribed. For example see Sect. 5, Fig. 10.226

3 Fracture toughness and elastic properties for the 227

cohesive model: as specified through the force 228

potential 229

For finite horizon ǫ > 0 the fracture toughness and 230

elastic moduli are recovered directly from the cohesive 231

strain potential Wǫ(S( y, x, u(t))). Here the fracture 232

toughness Gc is defined to be the energy per unit length 233

required eliminate force between each point x and y 234

on either side of a line in R
2. In this case the line is 235

the x2 = 0 axis. Because of the finite length scale 236

of interaction only the force between pairs of points 237

within an ǫ distance from the line are considered. The 238

fracture toughness Gc is calculated in Lipton (2016). 239

Proceeding as in Silling and Askari (2005) we have 240

Gc = 2

∫ ǫ

0

∫ ǫ

z

∫ arccos(z/ζ )

0

W
ǫ(S+)ζ 2 dψ dζ dz (13) 241

where ζ = | y − x|, see Fig. 5. Substitution of 242

Wǫ(S( y, x, u(t))) given by (6) into (13) delivers 243

Gc =
4

π

∫ 1

0

h(S2
+)r2 J (r)dr. (14) 244

It is evident from this calculation that the fracture 245

toughness is the same for all choice of horizons. This 246

provides the rational behind the ǫ scaling of the poten- 247

tial (6) for the cohesive model. Moreover the layer 248

width on either side of the crack centerline over which 249

the force is applied to create new surface tends to zero 250

with ǫ. In this way ǫ can be interpreted as a parameter 251

associated with the size of the failure zone of the mate- 252

rial. Equation (14) gives a way to calibrate the function 253

h that specifies the potential (7) when Gc is given. 254

Further calibration of h is possible using the elastic 255

moduli of the material. To calibrate h we relate elastic 256

moduli of the material to the cohesive potential 257

Wǫ(S( y, x, u(t))). When the horizon is sufficiently 258

small we suppose the displacement inside Hǫ(x) is 259

affine, that is, u(x) = F x where F is a constant matrix. 260

For small strains, i.e., S = Fe ·e ≪ Sc, a Taylor series 261

expansion at zero strain shows that the strain potential 262

is linear elastic to leading order and characterized by 263

elastic moduli µ and λ associated with a linear elastic 264

isotropic material 265

W (x) =
∫

Hǫ(x)

| y − x|Wǫ(S( y, x, u)) d y 266

= µ|F |2 +
λ

2
|T r{F}|2 + O(ǫ|F |4). (15) 267
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Classic kinetic relations from double well peridynamic model

Fig. 4 The failure zone is

the grey shaded region and

the process zone is the clear

region inside the contour

Failure Zone Process zone

ǫ

ǫ

ℓǫ(t)

ǫ

y

z

x

ζ

ǫ

θ

cos−1(z/ζ)

Failure

Zone Centerline

Fig. 5 Evaluation of fracture toughness Gc. For each point x

along the dashed line, 0 ≤ z ≤ ǫ, the work required to break the

interaction between x and y in the spherical cap is summed up in

(13) using spherical coordinates centered at x. This summation

is done on both sides of the failure zone centerline

The elastic moduli λ and µ are calculated directly from268

the strain energy density and are given by269

µ = λ = M
1

4
h′(0) , (16)270

where the constant M =
∫ 1

0 r2 J (r)dr . The elasticity271

tensor is given by272

Ci jkl = 2µ

(

δikδ jl + δilδ jk

2

)

+ λδi jδkl . (17)273

When µ is specified h′(0) is determined by (16). For274

the simple potentials considered here the elasticity cor-275

responds to materials with Poisson’s ratio 1/4, i.e.,276

λ = µ. It is noted that we are free to consider other277

multi well potentials and general choices of Poisson’s278

ratios Jha and Lipton (2019b); these correspond to state279

based peridynamic models Silling et al. (2007).280

4 Kinetic relation from nonlocal dynamics 281

In this section we show that the well known kinetic 282

relation for the velocity of the crack tip, Freund (1990), 283

follows from the nonlocal model in the limit of vanish- 284

ing horizon in two different ways. We begin by defining 285

the kinetic energy density by T ǫ = ρ|u̇ǫ(x, t)|2/2 and 286

the stress work density for the nonlocal model given by 287

W ǫ(x) =
∫

Hǫ(x)
| y − x|Wǫ(S( y, x, uǫ(t))) d y. 288

4.1 Rate of internal energy change inside a domain 289

containing the crack tip 290

Note that for the nonlocal model the same equation 291

applies everywhere in the body. Because of this we 292

can calculate the time rate of change of internal energy 293

of a domain containing the crack tip and pass to the 294

limit of local interactions. Fix a contour Γδ of diameter 295

δ surrounding the domain Pδ(t) containing the tip of 296

the failure zone for the local model, see Fig. 6. Recall 297

that the line centered within the failure zone running 298

from the notch to the leading edge of the failure zone 299

is called the failure zone center line, see Fig. 3. We 300

investigate power balance in regions containing the tip 301

of the failure zone. We suppose Pδ(t) is moving with 302

the crack tip velocity V ǫ(t) along the horizontal axis. 303

A direct calculation given in Sect. 6 establishes the 304

following explicit formula for the rate of change in 305

internal energy inside the domain containing the edge 306

of the failure zone. 307

Rate of change of internal energy for a region con- 308

taining the crack tip for the nonlocal model: 309

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx = I ǫ(Γδ(t)) (18) 310
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nAδ

P δ

Γδ

V ǫǫ

ǫ

Fig. 6 Contour Γδ surrounding the domain Pδ moving with the

velocity V ǫ of the failure zone in grey and process zone

with311

I ǫ(Γδ(t)) =
∫

Γδ(t)
(T ǫ + W ǫ)V ǫe1 · n ds − Eǫ(Γδ(t)),312

(19)313

where n is the outward directed unit normal, ds is an314

element of arc length, and e1 is the unit vector pointing315

in the direction of crack propagation. The rate of elastic316

energy flowing into the domain surrounding the crack317

tip is318

Eǫ(Γδ(t))

=
∫

Aδ(t)

∫

Hǫ(x)∩Pδ(t)

∂SW
ǫ(S( y, x, uǫ))e y−x

· (u̇ǫ(x) + u̇ǫ( y)) d ydx,

(20)319

where Aδ(t) is the part of D exterior to Pδ(t). These320

relations follow directly from the nonlocal Cauchy’s321

equations of motion (8), this is shown in Sect. 6. Equa-322

tion (18) gives the following energy criterion for local323

power balance:324

Local power balance of a neighborhood containing325

the crack tip is given by the stationarity of its internal326

energy with respect to time.327

The stress work density flowing into the moving328

domain is related to fracture toughness by329

∫

Γδ(t)

W ǫV ǫe1 · n ds = −GcV ǫ(t) + O(δ). (21)330

and331

∫

Γδ(t)

T ǫV ǫe1 · n ds = O(δ). (22)332

These identities are obtained in Sect. 7. One recalls that333

the stress power is that part of the externally supplied334

power which is not converted into kinetic energy. This335

is corroborated by the numerical experiments provided336

in Sect. 5.337

When the horizon goes to zero we get for V ǫe1 → 338

V e1, 339

lim
ǫ→0

∫

Γδ(t)

W ǫV ǫe1 · n ds = −GcV (t),

lim
ǫ→0

Eǫ(Γδ(t)) = −
∫

Γδ

CEu0n · u̇0 ds + O(δ),

(23) 340

where CEu0n·u̇0 is the energy flux into Pδ . The change 341

in internal energy inside the domain containing the 342

crack tip is given by: 343

lim
ǫ→0

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx

=
∫

Γδ

CEu0n · u̇0 ds − GcV (t) + O(δ).

(24) 344

Off the crack the displacement u0 satisfies Cauchy’s 345

equations of motion for a continuum body 346

ρ ü0 = div
(

CEu0
)

+ b (25) 347

where Ei j = 1/2(u0
i, j +u0

j,i ) is the symmetrized gradi- 348

ent Lipton (2014, 2016). The crack flanks are traction 349

free and u0 satisfies boundary and initial conditions see 350

Lipton and Jha (2020). 351

For F = limδ→0

∫

Γδ
CEu0n · u̇0 ds we get 352

lim
δ→0

lim
ǫ→0

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx + GcV = F . (26) 353

Power balance gives 354

lim
δ→0

lim
ǫ→0

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx = 0, (27) 355

and from Atkinson and Eshelby (1965), Kostrov and 356

Nikitin (1970), Freund (1972), and Willis (1975) the 357

semi explicit kinetic relation connecting the energy flux 358

into the crack tip to the crack velocity follows from (26) 359

and is of the form given by Freund and Clifton (1974) 360

Gc =
F

V
=

1 + ν

E

V 2

c2
s D

αt K 2
I (t), (28) 361

were ν is the Poisson’s ratio, E is the Young modulus 362

V is the crack velocity, cs is the shear wave speed, 363

cl = (λ + 2µ/ρ)1/2 is the longitudinal wave speed, 364

D = 4αsαl − (1 + α2
s )2, and αs = (1 − V 2/c2

s )
1/2, 365

αl = (1−V 2/c2
l )1/2. Here K I (t) is the mode I dynamic 366

stress intensity factor and depends on the details of the 367

loading and is not explicit. 368

In summary (24) and (26) are recovered directly 369

from (8) and are a consequence of the nonlocal dynam- 370

ics in the ǫ = 0 limit. The recovery is possible since 371

the nonlocal model is well defined over the failure zone. 372

The rate of change in energy (18) and its limit (24) are 373

calculated in Sects. 6 and 7. 374
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ℓǫ
+

ℓǫ
−

−n

SδAδ

ǫ

ǫ

V ǫ

Fig. 7 The contour Sδ surrounding the tip of the failure zone (in

gray) and process zone moving with velocity V ǫ

4.2 Local power balance for translation invariant375

displacement in the neighborhood of the crack tip.376

In this section we consider a constant velocity crack for377

our peridynamic model and suppose that the displace-378

ment is translation invariant in the neighborhood of the379

crack tip. These assumptions are standard in LEFM380

Rice (1968b), Sih (1968), Irwin (1967), Freund and381

Clifton (1974), Nillison (1974). For this case we show382

that the change in the internal energy of the neighbor-383

hood surrounding the crack tip is zero. So energy bal-384

ance holds for the peridynamic model. To see this con-385

sider the translation invariant displacement field of the386

form uǫ(x, t) = uǫ(x − tV e1) where t is time and V is387

the constant crack speed directed along the positive x1388

axis. It follows that the stress power and rate of change389

in kinetic energy inside Pδ are given by390

Ẇ ǫ = −∂x1 W ǫ V

Ṫ ǫ = −∂x1 T ǫ V .
(29)391

So from the divergence theorem we get392

∫

Pδ(t)

Ṫ ǫ + Ẇ ǫ dx

= −
∫

Γδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds,

(30)393

and by Reynolds transport theorem (54) we discover394

the nonlocal model gives local power balance, i.e.,395

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx = 0. (31)396

From this together with (18), (30) we conclude that397

∫

Γδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds − Eǫ(Γδ(t)) = 0, (32)398

and from (21) our peridynamic model gives399

GcV = −Eǫ(Γδ(t)) + O(δ). (33)400

On passing to the zero horizon limit in the nonlocal 401

dynamics we see that local power balance for constant 402

velocity cracks modeled by LEFM is given by 403

Local power balance for LEFM: 404

GcV = lim
δ→0

∫

Γδ

CEu0n · u̇0 ds. (34) 405

The local power balance for LEFM has been predicted 406

here using the nonlocal model. 407

4.3 The peridynamic J integral and Linear Elastic 408

Fracture Mechanics 409

For LEFM the elastic field near the crack tip is derived 410

from the local Cauchy’s equations of motion for a con- 411

tinuum body. This gives the flow of elastic energy into 412

the crack tip, Freund (1990). On the other hand the 413

kinetic relation for LEFM does not follow from the 414

local Cauchy’s equation of motion alone. Instead the 415

kinetic relation for LEFM follows from Mott’s hypoth- 416

esis Mott (1948) on the balance of elastic energy flow- 417

ing into the crack tip and power needed to create new 418

fracture surface Freund (1990). In this section we will 419

proceed like is done in the local theory but obtain the J 420

integral for the nonlocal model and compare with the 421

previous results. We compute the time rate of change 422

of the internal energy of the domain Aδ(t) surrounding 423

the crack tip inside the contour shown in Fig. 7. Cal- 424

culation as in Sect. 7 shows that the energy flux from 425

Aδ into the flanks of the failure zone ℓǫ
± is zero so the 426

energy flux through the surface Sδ of diameter δ is the 427

energy flow into the tip of the damage zone given by 428

J ǫ(Sδ(t)) where 429

J ǫ(Sδ(t)) = −
∫

Sδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds

+ Eǫ(Sδ(t)),

(35) 430

here n is the outward directed unit normal. The rate of 431

elastic energy flowing into in the domain surrounding 432

the crack tip is 433

Eǫ(Sδ(t))

=
∫

Aδ(t)

∫

Hǫ(x)∩Qδ(t)

∂SW
ǫ(S( y, x, uǫ))e y−x

· (u̇ǫ(x) + u̇ǫ( y)) d ydx.

(36) 434
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When the horizon goes to zero a calculation as in Sect. 7435

shows,436

lim
ǫ→0

∫

Sδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds = O(δ),

lim
ǫ→0

Eǫ(Sδ(t)) = −
∫

Sδ

CEu0n · u̇0 ds,

(37)437

and the local limit of the peridynamic J integral is given438

by439

J (Sδ(t)) = −
∫

Sδ

CEu0n · u̇0 ds + O(δ) (38)440

and on taking δ = 0 we recover the total energy flux into441

the crack tip as in LEFM. Note that (38) differs from442

(24) since Sδ does not cross the failure zone. Formula443

(38) is the well known J integral of LEFM introduced444

in Rice (1968a), and developed for dynamics Atkinson445

and Eshelby (1965), Freund (1972), and Sih (1970).446

Applying energy balance and using the general form447

of the elastic fields near the crack tip for samples of448

infinite extent Atkinson and Eshelby (1965), Kostrov449

and Nikitin (1970), Freund (1972), and Willis (1975)450

we recover the crack tip kinetic relation (28).451

Alternate versions of the peridynamic J integral have452

been deduced for dynamic fracture problems in Silling453

and Lehoucq (2010) using balance laws. For quasi-454

static fracture problems the work of Hu et al. (2012),455

derive a J integral using an infinitesimal virtual crack456

extension and Stenström and Eriksson (2019) acceler-457

ate the numerical calculation of the J integral using the458

peridynamic displacement field. The dynamic J inte-459

gral developed here is derived from the equation of460

motion using integration by parts and naturally agrees461

with Silling and Lehoucq (2010). However the explicit462

form is different and follows from a suitable change463

of variables. In addition the“crack” for the nonlocal464

model is not artificially assumed infinitesimally thin as465

in other approaches but instead we use the fact that it466

has a thickness that is twice the peridynamic horizon.467

To summarize the approach of Sect. 4.1 is self468

contained and follows exclusively from the nonlocal469

Cauchy equation of motion. While the approach of470

Sect. 4.3 reflects the classic approach and uses the non-471

local model to compute the elastic energy only. It is then472

equated to the energy required to create new fracture473

surface invoking Mott’s hypothesis as is done with the474

local theory.475

5 Numerical simulation and analysis 476

The principal point of peridynamic modeling is that 477

crack motion is part of the solution and emerge from 478

the nonlocal dynamics. This is the hallmark of peridy- 479

namic modeling Silling (2000), Ha and Bobaru (2010). 480

In this section, we provide a numerical simulation using 481

the cohesive dynamics given by (8) to see that a crack 482

moving at constant speed satisfies energy balance. The 483

numerical computation also shows that the stress work 484

flux is nearly equal to the energy release rate as antici- 485

pated by the theory, see (21), (22), (23). 486

5.1 Setup 487

We consider a sample of material with Young’s modu- 488

lus E = 88 kPa, Poisson’s ratio ν = 0.25, and material 489

density ρ = 1011.2 kg/m3. The Rayleigh wave speed 490

and shear wave speed for the sample are cR = 5.502 491

m/s and cs = 5.9 m/s respectively. The numerical sim- 492

ulation is motivated by the experiments carried out in 493

Goldman et al. (2010) and the material domain, hori- 494

zon, discretization, and boundary conditions are shown 495

in Fig. 8. In this work we assume plane stress condi- 496

tions. We consider a pre-cracked specimen as shown 497

in Fig. 8. The pre-crack is of length l = 3 mm. The 498

critical energy release rate is taken to be Gc = 20 J/m2. 499

The force potential is g(r) = c(1 − exp[−βr2]), 500

where c, β are constants. The influence function is of 501

the form J (r) = 1 − r . Equations (14), (16) are used 502

to calibrate the values of the parameters c, β. For the 503

material properties listed above we get c = 15.705, 504

β = 8965.378. We define the damage Z(x) at a mate- 505

rial point x as follows: 506

Z(x) = sup
y∈Hǫ(x)

|S( y, x, u(t))|
Sc( y, x)

. (39) 507

508

A value Z > 1 implies that there are neighboring points 509

y for which the bond-strain between points y and x lies 510

above the critical strain. 511

We consider a uniform discretization and offset the 512

crack vertically by h/100 where h = 0.125 mm is 513

the mesh size so that the crack line is not on the grid 514

line. For temporal discretization, we consider velocity- 515

verlet scheme with time step size ∆t = 2.2 µs and final 516

time T = 1.1 s. For mesh convergence, we rely on our 517

earlier work Jha and Lipton (2019b) where a similar 518
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Fig. 8 Setup for steady

state crack propagation

experiment. Here ǫ = 0.75

mm and v = 1.475 mm/s.

Domain is uniformly

discretized with mesh size

h = ǫ/6 = 0.125 mm

setup was considered and convergence with respect to519

the mesh was shown. To see if the simulation changes520

when using an unstructured mesh, we ran the same521

problem on unstructured mesh consisting of linear tri-522

angle elements. We first obtained the mesh using Gmsh523

library and then computed the nodal volume associated524

to each vertex in the mesh. Pairs of vertices and vol-525

umes form the particle mesh. The results were similar526

to the case of uniform discretization.527

We choose crack tip location as a measure of conver-528

gence of the temporal discretization. Here the crack tip529

is recovered as a post processing step. In order to find530

the crack tip at any given time step we search the sim-531

ulation output data for vertices with damage Z greater532

than 1 and the crack tip is the vertex such that533

– No other vertex on the right side of the selected534

vertex exists with Z > 1.535

To illustrate time convergence, we consider the same536

simulation but using a smaller time step ∆t = 1.1 µs.537

The crack tip position is compared for the two different538

time steps at times t = 0.9603, 0.9647, 0.9801 s. Here539

the x-coordinates of the crack tip for ∆t = 2.2 µs and540

∆t = 1.1 µs are given by 0.011057, 0.02456, 0.072951541

m and 0.011018, 0.024525, 0.072939 m respectively.542

The simulation for the time step ∆t = 2.2 is shown in543

Fig. 9 at times t = 0.9603, 0.9647, 0.9801 s.544

Crack velocities are computed over a longer time545

step ∆t , i.e. Crack veloci ty = Distance traveled546

over timestep/∆t . Here ∆t = 0.0022s while the time547

step used in the simulation is ∆t = 2.2 µs. The choice548

of ∆t smooths out the high frequency velocity fluctu-549

ations due to bond breaking and delivers an averaged550

crack velocity over an interval of length ∆t .551

When labeling plots we will apply the following552

notation:553

W V :=
∫

Γδ

W ǫ V ǫ · nds,554

Fpd := −Eǫ(Γδ)555

Ė :=
d

dt

∫

Pδ

T ǫ + W ǫdx, (40) 556

557

where V ǫ is the crack velocity. All plotted quantities 558

are in units of Joules/s. We will also display the total 559

fracture energy at time t , denoted by P E , see (41), and 560

the total energy released by a crack of length l, given 561

by G E = l × Gc. 562

5.2 Results 563

The plot of crack velocity and deformation field sur- 564

rounding the crack tip centerline at three selected times 565

are shown in Fig. 9. Damage in the reference configura- 566

tion is plotted in Fig. 10. The figure shows that damage 567

is localized and corresponds to the crack in the nonlo- 568

cal model and is of width 2(ǫ + h). The crack veloc- 569

ity history given by Fig. 9 is in qualitative agreement 570

with experimental results (Goldman et al. 2010, Figure 571

2). There is an initial increase in crack speed, but as 572

waves reflect back from the boundary onto the crack 573

tip the velocity becomes roughly constant. To display 574

the crack opening displacement and the deformation of 575

the specimen we have added the displacement field at 576

the node to its nodal location. This is done for all nodal 577

points in the specimen, see Fig. 9. 578

Next, we focus on regime of near constant crack 579

speed corresponding to the time interval [0.9647, 0.9801]. 580

As predicted from theory, see (21), −W V agrees with 581

V Gc see Fig. 11. The simulation also shows that the 582

time rate of change in kinetic energy near the crack tip 583

is small and Fpd is close to V Gc see Fig. 11. The bot- 584

tom Fig. in 11 shows that the rate of total energy Ė in 585

the constant crack speed regime is close to zero. 586

We compute the peridynamic energy of the failure 587

zone and compare it with the classic fracture energy. 588

For a crack of length at time t given by l(t), the classic 589

fracture energy (GE) is G E(t) = Gc × l(t). Recall the 590

failure zone at time t is denoted by 591
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Fig. 9 Left: Crack velocity vs crack length. b = 0.015 m is

the half width of the domain. cR = 5.502 m/s is the Rayleigh

wave speed. The crack velocity approaches steady state value

of 0.6 which is consistent with the experimental result in Gold-

man et al. (2010); Bouchbinder et al. (2014). This is due to the

fact that crack feels the boundary and wave reflection from the

boundary obstructs crack to acquire more velocity. Right: Crack

opening displacement and deformation in the specimen at times

t = 0.9603, 0.9647, 0.9801 s

Fig. 10 The crack together with process zone is given

for Z > 1 in the reference configuration at times t =
0.9603, 0.9647, 0.9801 s. Here the points where Z > 1 are

shaded white all other points are shaded black. The crack is a

thin region of thickness 2(ǫ + h)

F Z ǫ(t) and the peridynamic fracture energy (PE) is592

given by593

P E(t) 594

=
∫

F Z ǫ (t)

[

1

ǫdωd

∫

Hǫ (x)

| y − x|Wǫ(S( y, x, u)) d y

]

dx.

(41)

595

596

The peridynamic fracture energy is compared to the 597

classic fracture energy in Fig. 12 and is seen to be nearly 598

identical. 599

6 Change in internal energy on subdomains 600

containing the crack tip for the nonlocal model 601

In this section we recover the rate of change of inter- 602

nal energy (18) using the nonlocal version of Cauchy’s 603

equations of motion for a continuum body given by 604

(8). Consider the rectangular contour Γδ(t) of diame- 605

ter δ bordering the domain Pδ(t) containing the crack 606

tip. We suppose Pδ(t) is moving with the crack tip 607

speed V ǫ(t) see Fig. 6. It will be shown that the rate of 608

change of energy inside Pδ(t) for the nonlocal dynam- 609

ics is given by (18). We start by introducing a non- 610

local divergence theorem applied to the case at hand. 611

To expedite taking ǫ → 0 limits in the next section 612

we make the change of variables y = x + ǫξ where ξ 613
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Fig. 11 Top: Normalized

rate of energies given by

Fpd ,−W V and LEFM rate

V × Gc. Bottom: Negative

of rate of total contour

energy, −Ė . Here energy

rates are divided by cSGc,

where cs = 5.9m/s is the

shear wave speed and

Gc = 20.0J/m2 is the

critical energy release rate.

Plots are at time steps in the

constant crack speed time

interval [0.9647, 0.9801]. In

both plots, the limits in

y-axis are taken as

[−0.1, 1.0] where the upper

limit is the normalized

energy rate associated to

crack moving at shear wave

speed
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−Ė

belongs to the unit disk at the origin H1(0) = {|ξ | < 1}614

and e = ξ/|ξ |. The strain is written615

uǫ(x + ǫξ) − uǫ(x)

ǫ|ξ |
:= Dǫ|ξ |

e uǫ, and

S( y, x, uǫ(t)) = Dǫ|ξ |
e uǫ · e,

(42)616

and the work done in straining the material between617

points y and x given by | y − x|∂SW
ǫ(S( y, x, uǫ(t)))618

transforms in the new variables to619

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)620

=
2|ξ |J (|ξ |)

ǫ2ω2
h′(ǫ|ξ ||Dǫ|ξ |

e uǫ · e|2)Dǫ|ξ |
e uǫ · e.(43)621

We will use the following nonlocal divergence theorem.622

Nonlocal divergence theorem:623

ǫ2

∫

Pδ (t)

∫

H1(0)

D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w(x) · e
]

dξdx

= ǫ2

∫

H1(0)

∫

(Pδ (t)−ǫξ)\Pδ (t)

∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w(x) · e dxdξ

− ǫ2

∫

H1(0)

∫

Pδ (t)\(Pδ (t)−ǫξ)

∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w(x) · e dxdξ.

624

(44)625

This identity follows on applying the definition of 626

D
ǫ|ξ |
−e ϕ = (ϕ(x − ǫξ) − ϕ(x))/ǫ|ξ | for scalar fields ϕ 627

and Fubini’s theorem. When convenient we set Aδ(t) = 628

D \ Pδ(t) and rewrite the last two terms of (44) in x 629

and y variables to get 630

ǫ2

∫

Pδ(t)

∫

H1(0)

D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w · e
]

dξdx

=
∫

Aδ(t)

∫

Hǫ (x)∩Pδ(t)

∂SW
ǫ(S( y, x, uǫ(t)))(w(x)

+ w( y)) · e y−x d ydx,

(45) 631

and we can rewrite (45) in x and ξ variables to get 632

ǫ2

∫

Pδ(t)

∫

H1(0)

D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w · e
]

dξdx

= ǫ2

∫

H1(0)

∫

(Pδ(t)−ǫξ)\Pδ(t)

∂SW
ǫ(Dǫ|ξ |

e uǫ · e)(w(x)

+ w(x + ǫξ)) · e dxdξ.

(46) 633

Lastly a straight forward manipulation in (46) delivers 634

the product rule: 635
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Product rule636

ǫ2

∫

Pδ(t)

∫

H1(0)

D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)w(x) · e
]

dξdx

= −ǫ2

∫

Pδ(t)

∫

H1(0)

2∂SW
ǫ(Dǫ|ξ |

e uǫ · e)e · w(x) dξdx

− ǫ2

∫

Pδ(t)

∫

H1(0)

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)Dǫ|ξ |
e w · e dξdx.

(47)637

We now recover (18) from (8). Multiplying both638

sides of (8) by u̇ǫ , integration over Pδ(t), and applying639

the product rule gives640

∫

Pδ (t)
∂t

ρ|u̇ǫ |2

2
dx

= ǫ2
∫

Pδ (t)

∫

H1(0)
2∂SW

ǫ (D
ǫ|ξ |
e uǫ · e)u̇ǫ (x) · e dξdx

= −ǫ2
∫

Pδ (t)

∫

H1(0)
D

ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ (D

ǫ|ξ |
e uǫ · e)u̇ǫ (x) · e

]

dξdx

− ǫ2
∫

Pδ (t)

∫

H1(0)
ǫ|ξ |∂SW

ǫ (D
ǫ|ξ |
e uǫ · e)D

ǫ|ξ |
e u̇ǫ · e dξdx

(48)641

Define the stress work density642

W ǫ(x, t) = ǫ2

∫

H1(0)

ǫ|ξ |Wǫ(Dǫn |ξ |
e uǫ · e) dξ. (49)643

We observe that the change in stress work density with644

respect to time (stress power density) is given by645

Ẇ ǫ =
∫

H1(0)

ǫ3|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)Dǫ|ξ |
e u̇ǫ · e dξ, (50)646

and (48) becomes647

∫

Pδ (t)

Ṫ ǫ + Ẇ ǫ dx

= −
∫

Pδ (t)

∫

H1(0)

ǫ2 D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)u̇ǫ · e
]

dξdx,

(51)648

where Ṫ ǫ = ∂t (ρ|u̇ǫ |2/2).649

Proceeding as in Freund (1990) and Willis (1975)650

we find the change of internal energy of Pδ(t). We651

consider the region R given by the tube in space time652

swept out by Pδ(t) moving with constant velocity V ǫ
653

in the x1 direction. Here we consider the time interval654

t1 < t < t2. We write655

∫ t2

t1

∫

Pδ(t)

∂t (T
ǫ + W ǫ) dx dt

=
∫

R

∂t (T
ǫ + W ǫ) dx dt

=
∫

∂ R

(T ǫ + W ǫ)
dt

dν
dS,

(52)656

where we have applied the divergence theorem and dt
dν

is the direction cosine of the exterior normal to R in the

time direction and dS is the element of surface area.

We will parameterize the surface area element on the

sides of ∂ R as dS =
√

1 + (V ǫ)2ds dt and on the sides

dt

dν
= −

V ǫe1 · n
√

1 + (V ǫ)2

where n is the outward directed unit normal to ∂ Pδ(t). 657

Applying this to (52) gives the identity 658

∫ t2

t1

∫

Pδ(t)

∂t (T
ǫ + W ǫ) dx dt

= −
∫ t2

t1

∫

∂ Pδ(t)

(T ǫ + W ǫ)e1 · nV ǫ ds dt

+
∫

Pδ(t2)

T ǫ + W ǫ dx −
∫

Pδ(t1)

T ǫ + W ǫ dx,

(53) 659

where the last two integrals are on the top and bottom 660

faces of R at t = t2 and t1 respectively. Now take t1 = t 661

and t2 = t +∆t divide by ∆t and send ∆t → 0 in (53) 662

to get the identity 663

∫

Pδ(t)

∂t (T
ǫ + W ǫ) dx =

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx

−
∫

∂ Pδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds.

(54) 664

This is equivalent to using Reynolds transport theorem 665

but it is obtained in a way that does not require u̇ǫ to 666

be differentiable in space. So (54) together with (51) 667

and (45) deliver the change in internal energy: 668

d

dt

∫

Pδ(t)

T ǫ + W ǫ dx

=
∫

∂ Pδ(t)

(T ǫ + W ǫ)V ǫe1 · n ds

−
∫

Aδ(t)

∫

Hǫ(x)∩Pδ(t)

∂SW
ǫ(S( y, x, uǫ(t))) e y−x

· (u̇ǫ(x) + u̇ǫ( y)) d ydx

(55) 669

and (18) follows. 670

7 Formulas for peridynamic stress work and 671

convergence of peridynamic stress work and 672

elastic energy flux to those of the local model 673

In this section we establish (23). We start by discov- 674

ering the crucial identities (21) and (22). We denote 675

the four sides of the rectangular contour Γδ by Γi , 676

i = 1, . . . , 4 in Fig. 13. There is no contribution of the 677

integrand to the integral on the lefthand side of (22) on 678
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Fig. 12 Peridynamic and classical fracture energy. The interval

along the y-axis is [0, Gc L], where L is the length of domain and

is the maximum crack length

the sides 2 and 4 since e1 · n = 0 there. On side 3 the679

potential and kinetic energy densities are bounded so680

∣

∣

∣

∣

∫

Γ3

(T ǫ + W ǫ)V ǫe1 · n ds

∣

∣

∣

∣

= O(δ). (56)681

On side 1 we partition the contour Γ1 into three parts.682

The first part is given by all points on Γ1 that are further683

than ǫ away from x2 = 0 call this Γ1,+ and as before684

∣

∣

∣

∣

∣

∫

Γ1,+
(T ǫ + W ǫ)V ǫe1 · n ds

∣

∣

∣

∣

∣

= O(δ). (57)685

The part of Γ1 with 0 ≤ x2 ≤ ǫ is denoted Γ +
1 and the686

part with −ǫ ≤ x2 < 0 is denoted Γ −
1 and687

∣

∣

∣

∣

∣

∫

Γ ±
1

T ǫ V ǫe1 · n ds

∣

∣

∣

∣

∣

= O(δ). (58)688

Now we calculate689

∫

Γ +
1

W ǫ V ǫ e1 · n ds

= −V ǫ

∫

Γ +
1

W ǫ ds

= −V ǫ

∫

Γ +
1

∫

Hǫ (x)∩K +
ǫ

| y − x|Wǫ(S( y, x, uǫ(t))) d yds

− V ǫ

∫

Γ +
1

∫

Hǫ (x)∩K −
ǫ

| y − x|Wǫ(S( y, x, uǫ(t))) d yds

(59)690

Here Hǫ(x)∩ K +
ǫ is the subset of y in Hǫ(x) for which691

the vector with end points y and x crosses the failure692

zone centerline and Hǫ(x) ∩ K −
ǫ is the subset of y in693

Hǫ(x) for which the vector with end points y and x694

does not cross the failure zone centerline. Calculation695

Fig. 13 The sides of the

contour Γδ is denoted by Γ1

through Γ4

2ǫ

Γ2

Γ3Γ1

Γ4

as in Sect. 3 gives 696

∫

Γ +
1

∫

Hǫ(x)∩K +
ǫ

| y − x|Wǫ(S( y, x, uǫ(t))) d yds

=
∫ ǫ

0

∫ ǫ

z

∫ arccos(z/ζ )

0

W
ǫ(S+)ζ 2 dψ dζ dz

=
Gc

2
,

(60) 697

and it follows from calculating as in (15) we get that 698

∣

∣

∣

∣

∣

∫

Γ +
1

∫

Hǫ (x)∩K −
ǫ

| y − x|Wǫ(S( y, x, uǫn (t))) d yds

∣

∣

∣

∣

∣

=O(δ). 699

(61) 700

From (60) and (61) we conclude that 701

∫

Γ +
1

W ǫV ǫe1 · n ds = − V ǫ

∫

Γ +
1

W ǫ ds

= −V ǫ Gc

2
+ O(δ).

(62) 702

An identical calculation shows 703

∫

Γ −
1

W ǫV ǫe1 · n ds = − V ǫ Gc

2
+ O(δ). (63) 704

and (21) and (22) follow. 705

To conclude we show 706

lim
ǫ→0

Eǫ(Γδ(t)) = −
∫

Γδ

CEu0n · u̇0 ds. (64) 707

Setting ∆ǫξ u̇ǫ(x) = u̇ǫ(x) + u̇ǫ(x + ǫξ) we have 708

Eǫ(Γδ(t))

= ǫ2

∫

Pδ(t)

∫

H1(0)

D
ǫ|ξ |
−e

[

ǫ|ξ |∂SW
ǫ(Dǫ|ξ |

e uǫ · e)u̇ǫ · e
]

dξdx

= ǫ2

∫

H1(0)

∫

(Pδ(t)−ǫξ)\Pδ(t)

∂SW
ǫ(Dǫ|ξ |

e uǫ · e)

∆ǫξ u̇ǫ(x) · e dxdξ.

(65) 709
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Integration in the ξ variable is over the unit disc710

centered at the origin H1(0). We split the unit disk into711

its for quadrants Qi , i = 1, . . . , 4. The boundary Γδ712

is the union of its four sides Γ j , j = 1, . . . , 4. Here713

the left and right sides are Γ1 and Γ3 respectively and714

the top and bottom sides are Γ2 and Γ4 respectively, see715

Fig. 14. We choose n to be the outward pointing normal716

vector to Pδ , t is the tangent vector to the boundary Γδ717

and points in the clockwise direction, and e = ξ/|ξ |.718

For ξ in Q1 the set of points x ∈ (Pδ(t) − ǫξ) \ Pδ(t)719

is parameterized as x = tx + n(ǫ|ξ |e · n)r . Here x720

lies on Γ1 ∪ Γ4 and 0 < r < 1 and the area element721

is −(ǫ|ξ |e · n)dxdr . For ξ in Q2 the set of points x ∈722

(Pδ(t) − ǫξ) \ Pδ(t) is again parameterized as x =723

tx+n(ǫ|ξ |e·n)r where x lies on Γ3∪Γ4 and 0 < r < 1724

and the area element is given by the same formula.725

For ξ in Q3 we have the same formula for the area726

element and parameterization and x lies on Γ3∪Γ4 with727

0 < r < 1. Finally for ξ in Q4 we have again the same728

formula for the area element and parameterization and729

x lies on Γ1∪Γ2 with 0 < r < 1. This parameterization730

and a change in order of integration delivers the formula731

for Eǫ(Γδ(t)) given by732

Eǫ(Γδ(t))

= −
∫

Γ1

∫ 1

0

∫

H1(0)∩(Q1∪Q4)
ǫ3|ξ |∂SW

ǫ(D
ǫ|ξ |
e uǫ · e)

∆ǫξ u̇ǫ(x) · en · e dξ dr dx

−
∫

Γ2

∫ 1

0

∫

H1(0)∩(Q3∪Q4)
ǫ3|ξ |∂SW

ǫ(D
ǫ|ξ |
e uǫ · e)

∆ǫξ u̇ǫ(x) · en · e dξ dr dx

−
∫

Γ3

∫ 1

0

∫

H1(0)∩(Q2∪Q3)
ǫ3|ξ |∂SW

ǫ(D
ǫ|ξ |
e uǫ · e)

∆ǫξ u̇ǫ(x) · en · e dξ dr dx

−
∫

Γ4

∫ 1

0

∫

H1(0)∩(Q1∪Q2)
ǫ3|ξ |∂SW

ǫ(D
ǫ|ξ |
e uǫ · e)

∆ǫξ u̇ǫ(x) · en · e dξ dr dx

+ O(ǫ).

(66)733

When uǫ → u0 one applies Taylor series to each734

integrand and passes to the ǫ = 0 limit to get that each735

integrand in the limit is given by736

4|ξ |
ω2

J (|ξ |)h′(0)Eu0e · e(u̇0 · e)(n · e) (67)737

so738

lim
ǫ→0

Eǫ(Γδ(t))739

= −
1

ω2

∫

Γ1

∫ 1

0

∫

H1(0)∩(Q1∪Q4)
4|ξ |J (|ξ |)h′(0)Eu0e740

· e(u̇0 · e)(n · e) dξ dr dx741

Fig. 14 Contour Γδ split

into four sides

Γ2

Γ3Γ1

Γ4

−
1

ω2

∫

Γ2

∫ 1

0

∫

H1(0)∩(Q3∪Q4)
4|ξ |J (|ξ |)h′(0)Eu0e 742

· e(u̇0 · e)(n · e) dξ dr dx 743

−
1

ω2

∫

Γ3

∫ 1

0

∫

H1(0)∩(Q2∪Q3)
4|ξ |J (|ξ |)h′(0)Eu0e 744

· e(u̇0 · e)(n · e) dξ dr dx 745

−
1

ω2

∫

Γ4

∫ 1

0

∫

H1(0)∩(Q1∪Q2)
4|ξ |J (|ξ |)h′(0)Eu0e 746

· e(u̇0 · e)(n · e) dξ dr dx . (68) 747
748

Noting that the integrand has radial symmetry in the 749

ξ variable and (15) (see the calculation below Lemma 750

6.6 of Lipton (2016)) one obtains 751

lim
ǫ→0

Eǫ(Γδ(t)) = −
4

∑

i=1

1

2

∫

Γi

2CEu0n · u̇0 dx, (69) 752

and (64) follows. 753

Identical calculations give (37) when we use the con- 754

tour Sδ and compute the change in energy internal to 755

Qδ in Fig. 7. 756

8 Conclusions 757

It has been shown for the nonlocal model that that the 758

net flux of stress work density through a small con- 759

tour surrounding the crack is the power per unit length 760

needed to create new fracture surface. This is derived 761

directly from Cauchy’s equations of motion for a con- 762

tinuum body (8) (see Sect. 4). In this paper the power 763

balance and kinetic relation given by (27), (28) is not 764

postulated but instead recovered directly from (18) by 765

taking the ǫ = 0 limit. For this case the generalized 766

Irwin relationship is shown to be a consequence of the 767

cohesive dynamics in the ǫ = 0 limit. The recovery 768

is possible since the nonlocal model is well defined 769
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Classic kinetic relations from double well peridynamic model

over the failure zone. This suggests that the double well770

potential of cohesive dynamics provides a phenomeno-771

logical description of the process zone at mesoscopic772

length scales. We have illustrated the ideas using the773

simplest double well energy for a bond based peridy-774

namic formulation. Future investigations will consider775

state based peridynamic models.776

Last we mention that if one fixes the horizon then777

the ratio rc to r+ will affect the size of the process778

zone hence a brittle to quasi brittle behavior can be779

expected depending on the ratio. On the other hand for780

any fixed ratio of rc to r+ the process zone goes to781

zero as the horizon goes to zero and we recover brittle782

fracture, this is shown theoretically in Lipton (2016). In783

addition the fracture toughness for the nonlocal model784

depends on the area underneath the force strain curve785

and is insensitive to the ratio. This is why this ratio does786

not show up in the calculations associated with ǫ → 0.787
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