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Abstract. A nonlocal field theory of peridynamic type is applied to model
the brittle fracture problem. The elastic fields obtained from the nonlocal
model are shown to converge in the limit of vanishing non-locality to
solutions of classic plane elastodynamics associated with a running crack.
We carry out our analysis for a plate subject to mode one loading. The
length of the crack is prescribed a priori and is an increasing function of
time.
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1. Introduction

Fracture can be viewed as a collective interaction across large and small length
scales. With the application of enough stress or strain to a brittle material,
atomistic scale bonds will break, leading to fracture of the macroscopic spec-
imen. From a modeling perspective fracture should appear as an emergent
phenomena generated by an underlying field theory eliminating the need for a
supplemental kinetic relation describing crack growth. The displacement field
inside the body for points x at time t is written u(x, t). The peridynamic
model [35,36], is described by the nonlocal balance of linear momentum of the
form

ρutt(x, t) =
∫

Hε(x)

f(y,x) dy + b(x, t) (1.1)

where Hε(x) is a neighborhood of x, ρ is the density, b is the body force
density field, and f is a material-dependent constitutive law that represents
the force density that a point y inside the neighborhood exerts on x as a
result of the deformation field. The radius ε of the neighborhood is referred
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D

Figure 1. Plate with initial crack on the left edge

to as the horizon. Here all points satisfy the same field equation (1.1). The
displacement fields and fracture evolution predicted by the nonlocal model
should agree with the dynamic fracture of specimens when the length scale
of non-locality is sufficiently small. In this respect numerical simulations are
compelling, see for example [4,37], and [39].

The displacement for the nonlocal theory is examined in the limit of
vanishing non-locality. This is done for a class of peridynamic models with
nonlocal forces derived from double well potentials see, [24]. The term double
well describes the force potential between two points. One of the wells is degen-
erate and appears at infinity while the other is at zero strain. For small strains
the nonlocal force is linearly elastic but for larger strains the force begins to
soften and then approaches zero after reaching a critical strain. This type of
nonlocal model is called a cohesive model. Fracture energies of this type have
been defined for displacement gradients in [40] with the goal of understanding
fracture as a phase transition in the framework of [14].

We theoretically investigate the limit of the displacements for the cohesive
model as the length scale ε of nonlocal interaction goes to zero. All information
on this limit is obtained from what is known from the nonlocal model for ε > 0.
In this paper the single edge notch specimen is considered as given in Fig. 1 and
the target theory governing the evolution of displacement fields is identified
when ε = 0.

One of the hallmarks of peridynamic simulations is localization of de-
fect sets with horizon as ε → 0. Theoretically localization of the jump set of
the displacement is established as ε → 0 in [23,24] where the limiting dis-
placement is shown to be an SBD2(D) valued function for almost all times
t ∈ [0, T ], see Sect. 3. The nonlocal cohesive model converges to a dynamic
model having bounded Griffith fracture energy associated with brittle frac-
ture and elastic displacement fields satisfying the elastic wave equation [23,24]
away from the fractures. This can be seen for arbitrarily shaped specimens with
smooth boundary in two and three dimensions. However the explicit traction
law relating the crack boundary to the elastic field lies out side the scope of
that analysis.
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This paper builds on earlier work and provides a global description of
the limit dynamics describing elastic fields surrounding a crack for the single
edge notch pulled apart by traction forces on its top and bottom edges. In this
treatment the advancing crack is prescribed as a failure zone in the neighbor-
hood of a line at the center of a rectangular specimen starting from a notch.
Symmetric forces and boundary conditions are imposed, consistent with the
assumption of a crack growing on a line and moving into the specimen. The
length of the failure zone is prescribed a priori and is an increasing function
of time for the nonlocal model. This paper does not investigate crack initia-
tion, and the crack grows from an initial crack. The objective of this paper is
to show that the elastic fields seen in the nonlocal model are consistent with
those in the local model in the limit of vanishing horizon. The analysis given
here shows that it is possible to recover the boundary value problem for the
linear elastic displacement given by Linear Elastic Fracture Mechanics inside
a cracking body as the limit of a nonlocal fracture model. To illustrate this a
family of initial value problems given in the nonlocal formulation is prescribed.
The family is parameterized by horizon size ε. The crack motion for ε > 0 is
prescribed by the solutions of the nonlocal initial value problem. It is shown
that up to subsequences, as ε → 0, the displacements associated with the so-
lution of the nonlocal model converge in mean square uniformly in time to the
limit displacement u0(x, t) that satisfies:

• Prescribed inhomogeneous traction boundary conditions.
• Balance of linear momentum as described by the linear elastic wave equa-

tion off the crack.
• Zero traction on the sides of the evolving crack.
• The set on which the elastic displacement jumps is a subset of the crack

set.
• The limiting elastodynamics is determined by the sequence of nonlocal

problems for ε > 0 and is obtained in the ε = 0 limit.
The first four items deliver the boundary conditions, elastodynamic equa-

tions, location of the jump set of the elastic field, and traction boundary con-
ditions on the crack. The ε → 0 limit of displacement fields for the nonlocal
model is seen to be a weak solution for the wave equation on a time dependent
domain recently defined in the work of [12], see theorem 3.4. Here the time
dependent domain is given by the domain surrounding the moving crack. This
establishes a rigorous connection between the nonlocal fracture formulation
using a peridynamic model derived from a double well potential and the wave
equation posed on cracking domains given in [12].

Peridynamic modeling implicitly couples the dynamics of the un-cracked
elastic material to crack tip growth. Although it is beyond the scope of the
current paper, it is of natural interest to explicitly recover the coupling between
the length of the crack and the dynamics of the elastic field. One answer
lies in deriving an explicit formula relating the time rate of change of kinetic
energy and stress work inside a neighborhood surrounding the crack tip to the
external elastic power applied to the neighborhood. This formula is obtained by
multiplying the equation of motion (2.16) by the velocity field, then performing
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an integration by parts, see [22]. With this formula in hand, one can formally
examine the ε → 0 case to identify the coupling between the motion of the
crack tip and the surrounding elastic field of the intact material, see [22].
For example, when the change in internal energy inside a vanishingly small
neighborhood of the crack tip is zero, then the crack velocity is coupled to
the dynamics of the elastic field by the kinetic relation of dynamic Linear
Elastic Fracture Mechanics (LEFM) [3,17,32,38], see [22]. Another approach
that address sharp free crack motion directly is recently developed in [11].
That approach provides a well posed sharp fracture model that couples the
elastic dynamics of intact material to the evolving crack tip motion over an
interval of crack velocities. That model provides for non-stationary free crack
motion based on a weak maximal dissipation condition and energy dissipation
balance [11].

The analysis given here treats a dynamic problem and compactness meth-
ods suited to the balance of momentum for nonlocal - nonlinear operators, are
applied, see Lemma 3.2 and Theorem 3.2. Proceeding this way delivers the
zero traction condition on the crack lips for the fracture model in the local
limit. Another issue is to prescribe body forces for the nonlocal model that
transform to into boundary tractions for the local model. In this paper a suit-
able layer of force is prescribed adjacent to the boundary of the sample for
the nonlocal model. It is motivated by the one proposed in [39]. The layer of
force is shown to converge to the standard traction boundary conditions seen
in local models, see Lemma 3.1. This theoretically corroborates the numerical
experiments with the nonlocal model carried out in [39]. It is pointed out that
the nonlocal model considered here is elastic, so cracks can heal if the strain
across the crack drops below the critical value. However, in this paper the ini-
tial conditions and boundary conditions are chosen such that the specimen is
under tensile strain and pulled apart so the crack has no opportunity to heal.
More complex models [26] involving dissipation and non-monotone or cyclic
load paths lie outside the scope of the paper and provide interesting avenues
for future research.

The nonlocal model is an example of several new approaches to dynamic
fracture modeling. These include solution of the wave equation on crack-
ing domains [9,10,12,31], phase field methods, [6,7,29,34], and peridynam-
ics [4,35,36,39]. In the absence of fracture and dynamics the Γ convergence
approach has been applied to peridynamic boundary value problems. The non-
local formulations are shown to converge to equilibrium boundary value prob-
lems for hyperelastic and elastic materials as ε → 0, see [5,30]. It is noted that
the aforementioned references while relevant to this work are only a few from
a rapidly expanding literature.

The paper is organized as follows: In Sect. 2 the nonlocal constitutive law
as derived from a double well potential is described and the nonlocal boundary
value problem describing crack evolution is given. Section 3 provides the prin-
ciple results of the paper and describes the convergence of the displacement
fields given in the nonlocal model to the elastic displacement field satisfying,
the linear wave equation off the crack set, zero Neumann conditions on the
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crack, and traction boundary conditions. Existence and uniqueness for the
nonlocal problems are established in 4. The convergence theorems are proved
in Sects. 5 and 6. The proof that the limit displacement is a weak solution of
the wave equation on a time dependent domain is given in Sect. 7. The results
are summarized in the conclusion Sect. 8.

2. Nonlocal elastodynamics

In this section we formulate the nonlocal dynamics as an initial boundary
value problem driven by a layer of force adjacent to the boundary. Here all
quantities are non-dimensional. Define the region D given by a rectangle with
rounded corners, see Fig. 1. The domain lies within the rectangle {0 < x1 <
a; −b/2 < x2 < b/2} and the initial crack originates on the left side of the
specimen, see Fig. 1. The specific dimensions of the initial crack are given in
Sect. 2.2. The domain is subject to plane strain loading and we will assume
small deformations so the deformed configuration is the same as the reference
configuration. We have u = u(x, t) as a function of space and time but will
suppress the x dependence when convenient and write u(t). The tensile strain
S between two points x,y in D along the direction ey−x is defined as

S(y,x,u(t)) =
u(y, t) − u(x, t)

|y − x| · ey−x , (2.1)

where ey−x = y−x
|y−x| is a unit vector and “·” is the dot product.

The nonlocal force f is defined in terms of a double well potential that
is a function of the strain S(y,x,u(t)). We define

Wε(z, S) = Jε(|z|) 1
ε3ω2|z|Ψ(

√
|z|S) (2.2)

The force potential is defined for all x,y in D by

Wε(y − x, S(y,x,u(t))) = Jε(|y − x|) 1
ε3ω2|y − x|Ψ(

√
|y − x|S(y,x,u(t)))

(2.3)
where Wε(y − x, S(y,x,u(t))) is the pairwise force potential per unit length
between two points x and y. Here, the influence function Jε(|y − x|) is a
measure of the influence that the point y has on x. Only points inside the
horizon can influence x so Jε(|y − x|) is nonzero for |y − x| < ε and is zero
otherwise. We take Jε to be of the form: Jε(|y−x|) = J( |y−x|

ε ) with J(r) = 0
for r ≥ 1 and 0 ≤ J(r) ≤ M < ∞ for r < 1.

The scale factor of ε−3 is chosen in (2.3) following [24] so that:
1. The elastic constants associated with the ε = 0 limit are given by (5.6).
2. The energy release rate per unit crack length is independent of ε and

given by (5.7).
Item (1) is invoked to find the dynamic evolution of the elastic field off the
crack in Sect. 3. Item (2) is used in an estimate to show the ε = 0 of the
displacement lies in the space of Special Functions of bounded Deformation,
see (5.8).
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Figure 2. a The double well potential function Ψ(r) for ten-
sile force. Here C+ is the asymptotic value of Ψ. b Cohesive
force. The derivative of the force potential goes smoothly to
zero at ±r+

The force potential is described in terms of its potential function and to
fix ideas Ψ is given by

Ψ = h(r2) (2.4)

where h is concave, see Fig. 2a. Here ω2 is the area of the unit disk and ε2ω2 is
the area of the horizon Hε(x). The potential function Ψ represents a convex-
concave potential such that the associated force acting between material points
x and y are initially elastic and then soften and decay to zero as the strain
between points increases, see Fig. 2b. The force between x and y is referred to
as the bond force. The first well for Wε(x − y, S(y,x,u(t))) is at zero tensile
strain and the potential function satisfies

Ψ(0) = Ψ′(0) = 0. (2.5)

The well for Wε(y − x, S(y,x,u(t))) in the neighborhood of infinity is char-
acterized by the horizontal asymptote limS→∞ Ψ(S) = C+, see Fig. 2a. The
critical tensile strain Sc > 0 for which the force begins to soften is given by
the inflection point rc > 0 of g and is

Sc =
rc√|y − x| , (2.6)

and S+ is the strain at which the force goes to zero

S+ =
r+√|y − x| . (2.7)

We assume here that the potential functions are bounded and are smooth. It
is pointed out that for this modeling the bond force in compression allows for
eventual softening. However one can easily generalize the analysis to handle
an asymmetric bond force that resists compression.
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2.1. Peridynamic equation of motion

The potential energy of the motion is given by

PDε(u) =
∫

D

∫
Hε(x)∩D

|y − x|Wε(y − x, S(y,x,u(t))) dydx. (2.8)

We consider single edge notched specimen D pulled apart by an ε thickness
layer of body force on the top and bottom of the domain consistent with plain
strain loading. In the nonlocal setting the “traction” is given by the layer of
body force on the top and bottom of the domain. For this case the body force
is written as

bε(x, t) =e2ε−1g(x1, t)χε
+(x1, x2) on the top layer and

bε(x, t) = − e2ε−1g(x1, t)χε
−(x1, x2) on the bottom layer,

(2.9)

where e2 is the unit vector in the vertical direction, χε
+ and χε

− are the char-
acteristic functions of the boundary layers given by

χε
+(x1, x2) = 1 on {θ < x1 < a − θ, b/2 − ε < x2 < b/2} and 0otherwise,

χε
−(x1, x2) = 1 on {θ < x1 < a − θ, −b/2 < x2 < −b/2 + ε} and 0 otherwise,

(2.10)
where θ is the radius of curvature of the rounded corners of D. The top and
bottom traction forces are equal and in opposite directions and g(x1, t) > 0.
We take the function g to be smooth and bounded in the variables x1:= and
t and define g on ∂D such that

g = ±e2g on {θ ≤ x1 ≤ a − θ, x2 = ±b/2} and g = 0 elsewhere on ∂D.

(2.11)
The subspace of L2(D,R2) given by all rigid body motions U is defined

by
U = {w : w = Qx + c; Q ∈ R

2×2, Q
T = −Q; c ∈ R

2}, (2.12)

From its definition the body force bε(x, t) satisfies
∫

D
w · bε dx = 0 for all

w ∈ U and S(y,x,w) = 0 for w ∈ U . With this in mind we introduce the
subspace of L2(D;R2) denoted by

L̇2(D;R2). (2.13)

defined to be all elements of L2(D;R2) orthogonal to U .
In this treatment the density ρ is assumed constant and we define the

Lagrangian

L(u, ∂tu, t) =
ρ

2
||u̇||2L2(D;R2) − PDε(u) +

∫
D

bε · u dx,

where u̇ = ∂u
∂t is the velocity. The action integral defined on L̇2(D;R2) for a

time evolution over the interval 0 < t < T, is given by

I =
∫ T

0

L(u, ∂tu, t) dt. (2.14)
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Initial crack

(0)

Figure 3. The initial crack for the non-local model

We suppose uε(t) is a stationary point and w(t) is a perturbation and applying
the principal of least action gives the nonlocal dynamics

ρ

∫ T

0

∫
D

u̇ε(x, t) · ẇ(x, t)dx dt

=
∫ T

0

∫
D

∫
Hε(x)∩D

|y − x|∂SWε

× (y − x, S(y,x,uε(t)))S(y,x,w(t)) dydx dt

−
∫ T

0

∫
D

bε(x, t) · w(x, t)dx dt.

(2.15)

and an integration by parts gives the strong form

ρüε(x, t) = Lε(uε)(x, t) + bε(x, t), for x ∈ D. (2.16)

Here Lε(uε) is the peridynamic force

Lε(uε) =
∫

Hε(x)∩D

f ε(y,x) dy (2.17)

and f ε(x,y) is given by

f ε(x,y) = 2∂SWε(y − x, S(y,x,uε(t)))ey−x , (2.18)

where

∂SWε(y − x, S(y,x,uε(t))) =
1

ε3ω2

Jε(|y − x|)
|y−x| ∂SΨ(

√
|y−x|S(y,x,uε(t))).

(2.19)

The dynamics is complemented with the initial data

uε(x, 0) = u0(x), ∂tu
ε(x, 0) = v0(x). (2.20)

Where u0 and v0 lie in L̇2(D;R2).
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The initial value problem for the nonlocal evolution given by (2.16) and
(2.20) or equivalently by (2.15) and (2.20) has a unique solution in C2([0, T ];
L̇2(D;R2)), see Sect.

4. Application of Grönwall’s inequality shows that the nonlocal evolution
uε(x, t) is uniformly bounded in the mean square norm over the time interval
0 < t < T ,

max
0<t<T

{
‖uε(x, t)‖2

L2(D;R2)

}
< K, (2.21)

where the upper bound K is independent of ε and depends only on the initial
conditions and body force applied up to time T , see [24].

2.2. Initial crack, failure zone and softening zone geometry

In this section the assumptions on the crack geometry and crack velocity are
presented. The initial crack is assumed present at the start of the fracture
evolution. It is described by a crack centerline lying on the x2 = 0 axis given
by the interval 0 ≤ x1 ≤ �(0). The initial crack centerline can be written as

C = {0 ≤ x1 ≤ �(0), x2 = 0}. (2.22)

The initial crack is the set of pairs x and y connected by a line segment that
is intersected by the centerline with |y − x| < ε for which the force f ε(x,y)
acting between them is zero. This set can be identified with the subset of the
sample given by the union of center points x of open balls Hε(x) that intersect
the crack centerline; this is displayed in Fig. 3. Mathematically the initial crack
is defined by

{x and y ∈ D, |y − x| < ε : x + s(y − x) ∩ C 	= ∅, for some s ∈ [0, 1]}.

(2.23)
We continue with a heuristic description of the assumptions on crack

structure and follow with their mathematical definitions given by (2.25), (2.27),
and (2.31). The failure zone FZε(t) represents the crack in the nonlocal model
at a given time t. This is the set of pairs x and y with |y − x| < ε for which
the force f ε(x,y) acting between them is zero. In this problem the domain
and body force adjacent to the upper and lower boundaries are symmetric
with respect to the x2 = 0 axis, see (2.9). The body force is perpendicular to
the x2 = 0 axis and points in the e2 direction on the top boundary layer and
the −e2 direction on the bottom boundary layer. Choosing initial conditions
appropriately the solution to the initial value problem has its first component
uε

1 even with respect to the x2 = 0 axis and second component uε
2 odd for

t ∈ [0, T ]. For the time dependent body force chosen here the failure is in
tension and is assumed to be confined to a neighborhood of the x2 = 0 axis
of width 2ε where strains are largest. The failure zone includes the initial
crack and is defined by a centerline lying on the x2 = 0 axis. The failure zone
propagates continuously from the initial crack into the interior of the specimen.
The failure zone centerline is

Cε(t) = {�(0) ≤ x1 ≤ �ε(t), x2 = 0}. (2.24)
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The failure zone FZε is assumed to be given by

FZε(t) = {x and y ∈ D, |y − x| < ε :

x + s(y − x) ∩ Cε(t) 	= ∅, for some s ∈ [0, 1]}.
(2.25)

The centerline is shown in Fig. 4 and the failure zone is the shaded region.
The total traction force on on the layer of thickness ε above the failure

zone centerline exerted by the body below the failure zone centerline is null
and vice versa. Associated with the failure zone is the softening zone. The
softening zone SZε(t) is the set of pairs x and y with |y−x| < ε separated by
the x2 = 0 axis such that the force f ε(x,y) between them is non-increasing
with increasing strain. From this it is clear that FZε(t) ⊂ SZε(t). Furthermore
at the leading edge of the crack one sees force softening between points x and
y separated by less than ε on either side of the x2 = 0 axis. As the crack
centerline moves forward passing between x and y the force between x and y
decreases to zero, see Fig. 4. That is given t there is a later time t+Δt for which
FZε(t+Δt) = SZε(t). The process zone where the bonds have softened but not
failed, i.e., x,y ∈ SZε(t)\FZε(t) is assumed to be of length proportional to ε.
The softening zone SZε(t) is specified through a softening zone centerline. The
force between two points x and y separated by the softening zone centerline
decreases with time. The centerline is

Sε(t) = {�(0) ≤ x1 ≤ �ε(t) + Cε, x2 = 0}, (2.26)

here we assume C is a positive constant. The softening zone is assumed to be
given by

SZε(t) = {x and y ∈ D, |y − x|
< ε : x + s(y − x) ∩ Sε(t) 	= ∅, for some s ∈ [0, 1]}.

(2.27)

We note that the shapes of FZε and SZε are consequences of their definition
similar to the initial crack. In what follows the crack does not propagate all
the way through the sample, i.e., �ε(T ) < a − δ, for every ε where δ is a small
fixed positive constant.

The strain S(y,x,uε(t)) is decomposed for x and y in D and |y−x| < ε
as

S(y,x,uε(t)) = S(y,x,uε(t))− + S(y,x,uε(t))+ (2.28)

where

S(y,x,uε(t))− =
{

S(y,x,uε(t)), if |S(y,x,uε(t))| < Sc

0, otherwise (2.29)

and

S(y,x,uε(t))+ =
{

S(y,x,uε(t)), if |S(y,x,uε(t))| ≥ Sc

0, otherwise (2.30)

with

{x and y ∈ D : S(y,x,uε(t))+ > 0} = { (x,y) ∈ SZε(t) },

{x and y ∈ D : S(y,x,uε(t))− > 0} = { (x,y) 	∈ SZε(t) }.
(2.31)
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FZ (t) SZ (t)

(t)(0)

Figure 4. The failure zone, failure zone centerline, and soft-
ening zone

In the next section we recover the dynamics in the limit of vanishing horizon
with failure zone and softening zone given by (2.25) and (2.27). The equations
(2.25), (2.27), and (2.31) together with the continuous and monotonic growth
of the crack centerline (2.24) constitute the hypothesis on the crack structure
for the nonlocal model. For the loading prescribed here (2.25) and (2.27) nat-
urally grow continuously and are a consequence of the symmetry of solution
uε(x, t), this is seen in simulations [22].

3. Convergence of nonlocal elastodynamics to elastic fields in
Linear Elastic Fracture Mechanics

The crack structure is prescribed by �ε(t) of (2.24) together with (2.25), (2.27),
and (2.31) and the elastic fields uε are solutions of (2.16) and (2.20). The crack
structure for ε > 0 is summarized in the following hypothesis:

Hypothesis 3.1. (Crack Structure for ε > 0.) The moving domain associated
with the defect is prescribed by the monotonic and continuous function �ε(t)
of (2.24), and the failure zone and softening zone are given by (2.25), (2.27),
and (2.31).

Given hypothesis 3.1 we now describe the convergence of uε to u0 to see
that u0 satisfies the boundary value problem for the elastic field of LEFM for
a running crack given in [17]. Recall �ε(t) is monotone increasing with time
and bounded so from Helly’s selection theorem we can pass to a subsequence
if necessary to assert that �εn(t) → �0(t) point wise for t ∈ [0, T ], where �0(t)
is monotone increasing with time and bounded. This delivers the crack motion
for the ε = 0 problem described by the crack

Γt = {�(0) ≤ x1 ≤ �0(t), x2 = 0}, t ∈ [0, T ]. (3.1)

Here τ < t implies Γτ ⊂ Γt. The time dependent domain surrounding the
crack is defined as Dt = D \ Γt see Fig. 5.
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Next we describe the convergence of body force, velocity, and accelera-
tion given by the ε > 0 initial value problems (2.16) and (2.20) to their ε = 0
counterparts. The convergence of the elastic displacement field, velocity field
and acceleration field are described in terms of suitable Hilbert space topolo-
gies. The space of strongly measurable functions w : [0, T ] → L̇2(D;R2) that
are square integrable in time is denoted by L2(0, T ; L̇2(D;R2)). Additionally
we recall the Sobolev space H1(D;R2) with norm

‖w‖H1(D;R2) :=
(∫

D

|w|2 dx +
∫

D

|∇w|2 dx

)1/2

. (3.2)

and Ḣ1(D;R2) = H1(D;R2)∩L̇2(D;R2). The Hilbert space dual to Ḣ1(D;R2)
is denoted by Ḣ1(D;R2)′. The set of functions strongly square integrable in
time taking values in Ḣ1(D;R2)′ for 0 ≤ t ≤ T is denoted by L2(0, T ; Ḣ1(D;
R

2)′). These Hilbert spaces are well known and related to the wave equation,
see [13,15]. For future reference we write the symmetric part of ∇u as Ew =
(∇w + ∇wT )/2.

The body force given in (2.16) is written as bεn(t) and we state the
following lemma.

Lemma 3.1. There is a positive constant C independent of εn and t ∈ [0, T ]
such that

|〈bεn(t),w〉| ≤ C‖w‖H1(D,R2), for all εn > 0 and w ∈ Ḣ1(D,R2), (3.3)

where 〈·, ·〉 is the duality paring between Ḣ1(D,R2) and its Hilbert space dual
Ḣ1(D,R2)′. In addition there exists b0(t) such that bεn ⇀ b0 in L2

(0, T ; Ḣ1(D;R2)′) and

〈b0(t),w〉 =〈g(t),w〉 :=
∫

∂D

g(t) · w dσ, (3.4)

for all w ∈ Ḣ1(D,R2), where g(t) is defined by (2.11) and g ∈ H−1/2(∂D)2.

The traction force (3.4) delivers loading consistent with a mode one crack
in the local model given by LEFM. For ease of exposition we defer the proof of
Lemma 3.1 as well as proofs of all other theorems introduced here to Sects. 5
and 6.

Passing to subsequences as necessary we obtain the convergence of the
elastic displacement field, velocity field, and acceleration field given by

Lemma 3.2.

uεn → u0 strong in C([0, T ]; L̇2(D;R2))

u̇εn ⇀ u̇0 weakly in L2(0, T ; L̇2(D;R2))

üεn ⇀ ü0 weakly in L2(0, T ; Ḣ1(D;R2)′)

üεn ⇀ ü0 weakly in L2(0, T ;H−1(D;R2)),

(3.5)

where u̇0(t) and ü0(t) are distributional derivatives in time.
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With the additional caveat that

sup
[0,T ]

sup
ε>0

‖uε(t)‖L∞(D,R2) < ∞, (3.6)

the limit evolution u0(x, t) is seen to be an element of the Sobolev space
Ḣ1(Dt,R

2), (with norm (3.2)), for almost all times in 0 < t < T . This is
summarized in the following theorem.

Theorem 3.1. The displacement u0 is in the Sobolev space Ḣ1(Dt,R
2) for a.e.

t ∈ (0, T ) and its first component denoted by u0
1(x1, x2) is even with respect

to the x2 = 0 axis and the second component of the displacement denoted by
u0

2(x1, x2) is odd with respect to the x2 = 0 axis and u0
2(x1, 0) = 0, H1 a.e. for

{�0(t) < x1 < a, x2 = 0}.

This theorem is proved in Sect. 5. The assumption (3.6) is used to con-
clude that u0 is in the space of Special of Functions of Bounded Deformation
(SBD). This type of assumption is used in passing to SBD limits in quasistatic
fracture energies based on discrete and continuous formulations [1] and in SBV
for scalar problems in image processing [19]. For dynamic problems it is used
in showing u0(t) ∈ SBD for almost all times t ∈ (0, T ), see [24]. Once it is
established that u0(t) belongs to SBD for almost all times, the symmetry of
solution and the crack growth hypothesis are used to show u0(t) ∈ Ḣ1(Dt,R

2),
a.e. t ∈ (0, T ).

The global description of ü0(t) can be further specified in terms of suit-
able Sobolev spaces posed over time dependent domains. For 0 ≤ τ ≤ t,
monotonicty implies �(0) = �0(0) ≤ �0(τ) ≤ �0(t). We choose 0 < β < �(0)
and introduce Dβ(t) = D \ {�(0) ≤ x1 ≤ �0(t) − β; x2 = 0}. It is evident
that Dt ⊂ Dβ(t) and its boundary is denoted by ∂Dβ(t). The subsets of the
boundary ∂Dβ(t) bordering the domains {x ∈ Dβ(t) : ±x2 ≥ 0} are denoted
by ∂D±

β (t). The layer L+
β (t) adjacent to ∂D+

β (t) is defined to be the region in-
side the solid and dashed contours drawn in Fig. 6. The dashed contour interior
to Dβ(t) is denoted by ∂L+ and described by the polygonal line connecting
the points; (�0(t) − β, 0), (�0(t) − β, b/10), (a − δ, b/10), (a − δ, 0), (a, 0), but
any polygonal line that avoids the crack tip similar to the one in Fig. 6 will
suffice. For 0 < t < T set

W+(Dβ(t))

=
{
w ∈ H1(L+

β (t),R2) and γw = 0 on ∂L+, w extended by 0 to Dβ(t)
}

,

(3.7)

here γ is the trace operator mapping functions in H1(L+
β (t),R2) to functions

defined on the boundary. The Hilbert space dual to W+(Dβ(t)) is denoted by
W+(Dβ(t))′. We introduce the layer L−

β (t) adjacent to the boundary ∂D−
β (t)
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and the boundary of the layer internal to Dβ(t) is denoted by ∂L−. The anal-
ogous space W−(Dβ(t)) is given by

W−(Dβ(t))

=
{
w ∈ H1(L−

β (t),R2) and γw = 0 on ∂L−, w extended by 0 to Dβ(t)
}

,

(3.8)

with dual W−(Dβ(t))′.
For any τ ∈ (0, T ) let u0

τ be the restriction of u0 to τ < t < T . Then we
have the following theorem.

Theorem 3.2. For all τ ∈ (0, T ), ü0
τ (x, t) belongs to W±(Dβ(τ))′ for almost

all t ∈ (τ, T ) and

üεn ⇀ ü0
τ weakly in L2(τ, T ;W±(Dβ(τ))′). (3.9)

Since ü0
τ belongs to W±(Dβ(τ))′ we introduce the the normal traction

C Eu0n defined on the crack lips for (τ, T ) and ∂D in the generalized sense
[28]. In order to describe the generalized traction we introduce trace spaces
compatible with the crack geometry. For t ∈ [0, t] we introduce the weight
defined on ∂D±

β (t) given by

α±(x1, x2, β) =

⎧⎪⎨
⎪⎩

min{1,
√

(�0(t) − β − x1)}, on x2 = 0
min{1,

√±x2}, on x1 = a, ±x2 > 0
1, otherwise.

(3.10)

and the trace spaces H
1/2
00 (∂D±

β (t))2 given in [27] are defined by all functions
w in H1/2(∂D±

β (t))2 with
∫

∂D±
β (t)

|w(x)|2α−1
± (x, β)ds < ∞. (3.11)

The dual to H
1/2
00 (∂D±

β (t))2 is H
−1/2
00 (∂D±

β (t))2. This type of trace space is
employed for problems of mechanical contact in [21], see also [33]. The trace
operator γ is a continuous linear map from W±(Dβ(t)) onto H

1/2
00 (∂D±

β (t))2,
see [27]. Additionally the trace operator γ is a continuous linear map from
H1(D,R2) onto H1/2(∂D)2.

In what follows the duality bracket for Hilbert spaces H and their dual
H ′ is defined by 〈·, ·〉, where the first argument is an element of H ′ and the
second an element of H. The generalized traction C Eu0n on ∂D is introduced
as an element of H−1/2(∂D)2. For this case we have suitable integration by
parts formulas given by the following two lemmas.

Lemma 3.3. Given that ü0 belongs to Ḣ1(D;R2)′ and H−1(D;R2), and for
w ∈ Ḣ1(D;R2), the map w → ∫

D
C Eu0 : Ew dx belongs to Ḣ1(D;R2)′
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x2 = 0

0(t)(0)

Dt

Figure 5. Crack corresponding to ε = 0 limit

then the generalized traction C Eu0n is uniquely defined as an element of
H−1/2(∂D)2 on the boundary ∂D is given by

〈C Eu0n, γw〉 =
∫

D

C Eu0 : Ew dx + ρ〈ü0,w〉, (3.12)

for all test functions w in Ḣ1(D,R2) is uniquely defined.

Lemma 3.4. Since ü0
τ (t) belongs to W±(Dβ(τ))′ for a.e., t ∈ (τ, T ) and u0(t)

is in Ḣ1(Dt;R2) the generalized tractions C Eu0(t)n± are uniquely defined as
elements of H

−1/2
00 (∂D±

β (τ))2 on the upper and lower sides of the crack Γt by

〈C Eu0(t)n±, γw〉 =
∫

L±
β (τ)

C Eu0(t) : Ew dx + ρ〈ü0
τ (t),w〉, (3.13)

for all test functions w in W±(Dβ(τ)) and a.e., t ∈ (τ, T ).

Lemmas 3.3 and 3.4 are proved in Sect. 6.
The global dynamics for u0(x, t) is given by the following theorem.

Theorem 3.3. The limit displacement field u0 satisfies

ρü0 = div
(
CEu0

)
(3.14)

as elements of H−1(D,R2), for a.e., t ∈ (0, T ) and

C Eu0n = g on ∂D, (3.15)

where the traction g is given by (2.11) and equality holds as elements of H−1/2

(∂D)2 for a.e., t ∈ (0, T ). Moreover there is zero traction on the upper and
lower sides of the crack Γt, t ∈ (0, T ), this is given by

C Eu0(t)n± = 0, for {�(0) < x1 ≤ �0(τ) − β; x2 = 0} (3.16)

as elements of H
−1/2
00 (∂D±

β (τ))2 for a.e., t ∈ (τ, T ), for all β ∈ (0, �0(τ)−�(0)).

Here the normal tractions (3.15) and (3.16) are defined in the generalized sense
(3.12), (3.13) respectively. To summarize Theorem 3.3 delivers the global de-
scription of the displacement fields inside the cracking body. Together they
deliver the elastodynamic equations and homogeneous traction boundary con-
ditions on the crack faces given in LEFM [3,17,32], and [38].
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We remark here that in Theorem 3.2 we restrict to times larger than a
fixed positive time τ to show the normal traction on the crack faces are zero
on any open subset set of the crack away from the crack tip. The case τ = t is
not considered because of the singularity in the elastic field at the crack tip.

The field u0(t,x) is seen to be a weak solution of the wave equation on
Dt for t ∈ [0, T ]. We begin with the definition of weak solution of the wave
equation on time dependent domains introduced in [12]. Neumann boundary
conditions are considered and set Vt = Ḣ1(Dt,R

2), V ∗
t = Ḣ1(Dt,R

2)′ for
t ∈ [0, T ], and H = L̇2(D,R2). Recall Γs ⊂ Γt when 0 ≤ s ≤ t ≤ T and
H1(ΓT ) < a − �(0).

Definition 3.1. [12] V is the space of functions v ∈ L2(0, T ; VT )∩H1(0, T ; H)
such that v(t) ∈ Vt for a.e. t ∈ (0, T ). It is a Hilbert space with scalar product
given by

(u,v)V = (u,v)L2(0,T ; VT ) + (u̇, v̇)L2(0,T ; H), (3.17)

where u̇ and v̇ denote distributional derivatives with respect to t.

Definition 3.2. [12] Given g(t) defined by (2.11) the displacement u is said to
be a weak solution of the wave equation⎧⎪⎨

⎪⎩
ρü(t) + div(CEu(t)) = 0
CEu(t)n = g(t), on ∂D

u(t) ∈ Vt

(3.18)

on the time interval [0, T ] if u ∈ V and

−
∫ T

0

ρ

∫
D

u̇(t) · ϕ̇(t) dx dt +
∫ T

0

∫
D

CEu(t) : Eϕ(t) dx dt

=
∫ T

0

∫
∂D

g(t) · ϕ(t) dσ dt (3.19)

for every ϕ ∈ V with ϕ(T ) = ϕ(0) = 0.

Theorem 3.4. If the crack tip �0(t) is continuous and strictly increasing for
t ∈ [0, T ] then the limit displacement u0 is a weak solution of the wave equation
on Dt for t ∈ [0, T ] given by Definition 3.2.

Theorem 3.4 establishes the link between the nonlocal theory and the
theory of the wave equation on time dependent domains [12]. Here the choice
of test functions delivers a variational description of vanishing normal traction
for the solution of the weak formulation.

4. Existence and uniqueness of nonlocal elastodynamics

We assert the existence and uniqueness for a solution uε(x, t) of the nonlocal
evolution with the balance of momentum given in strong form (2.16).
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(0)

0(t)− β

L+
β (t)

Dβ(t)

Figure 6. Domain L+
β (t) adjacent to ∂D+

β (t). The boundary
of L+

β (t) interior to Dβ(t) is denoted by the dashed line

Theorem 4.1. Existence and uniqueness of the nonlocal evolution. The initial
value problem given by (2.16) and (2.20) has a unique solution u(x, t) such
that for every t ∈ [0, T ], u takes values in L̇2(D;R2) and belongs to the space
C2([0, T ]; L̇2(D;R2)).

The proof of this proposition follows from the Lipschitz continuity of
Lε(uε)(x, t) + b(x, t) as a function of uε with respect to the L2(D;R2) norm
and the Banach fixed point theorem, see e.g. [25]. It is pointed out that SZε

describes an unstable phase of the material however because the peridynamic
force is a uniformly Lipschitz function on L̇2(D;R2) the model can be viewed
as an ODE for vectors in L̇2(D;R2) and is well posed.

5. Symmetry of the limiting elastic displacement field

In this section Theorem 3.1 is established. We begin with the caveat (3.6) to
conclude that the limit evolution u0(x, t) belongs to SBD2(D) for almost all
times t ∈ (0, T ), [24]. We then apply Hypothesis 3.1 and Lemma 5.1 to show
that the jump set of u0(t) lies inside the crack Γt and then conclude that
u0(t) ∈ Ḣ1(Dt,R

2) for a.e. t ∈ (0, T ).
For completeness we recall the definitions of SBD(D) and SBD2(D).

Functions u ∈ SBD(D) belong to L1(D;R2) and are approximately continu-
ous, i.e., have Lebesgue limits for almost every x ∈ D given by

lim
ε↘0

1
ω2ε2

∫
Hε(x)

|u(y) − u(x)| dy = 0, (5.1)

where Hε(x) is the ball of radius ε centered at x and ω2ε
2 is its area given in

terms of the area of the unit disk ω2 times ε2. The set of points in D which
are not points of approximate continuity is denoted by Su . A subset of these
points are given by the jump set Ju . The jump set is defined to be the set
of points of discontinuity which have two different one sided Lebesgue limits.
One sided Lebesgue limits of u with respect to a direction νu(x) are denoted
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by u−(x), u+(x) and are given by

lim
ε↘0

1
ε2ω2

∫
H−

ε (x)

|u(y) − u−(x)| dy = 0,

lim
ε↘0

1
ε2ω2

∫
H+

ε (x)

|u(y) − u+(x)| dy = 0,

(5.2)

where H−
ε (x) and H+

ε (x) are given by the intersection of Hε(x) with the half
spaces (y−x)·νu(x) < 0 and (y−x)·νu(x) > 0 respectively. SBD(D) functions
have jump sets Ju , that are countably rectifiable. Hence they are described
by a countable number of components K1,K2, . . ., contained within smooth
manifolds, with the exception of a set K0 that has zero 1 dimensional Hausdorff
measure [2]. The one dimensional Hausdorff measure of Ju agrees with the
one dimensional Lebesgue measure and H1(Ju ) =

∑
i H1(Ki). The strain

of a displacement u belonging to SBD(D), written as Eiju
0(t) = (∂xi

u0
j +

∂xj
u0

i )/2, is a generalization of the classic local strain tensor and is related to
the nonlocal strain S(y,x,u0) by

lim
ε→0

1
ε2ω2

∫
Hε(x)

|S(y,x,u0) − Eu0(x)e · e| dy = 0, (5.3)

for almost every x in D with respect to 2-dimensional Lebesgue measure L2.
The symmetric part of the distributional derivative of u, Eu = 1/2(∇u+∇uT )
for SBD(D) functions is a 2×2 matrix valued Radon measure with absolutely
continuous part with respect to two dimensional Lebesgue measure described
by the density Eu and singular part described by the jump set [2] and

〈Eu,Φ〉 =
∫

D

d∑
i,j=1

EuijΦij dx +
∫

Ju

d∑
i,j=1

(u+
i − u−

i )njΦij dH1, (5.4)

for every continuous, symmetric matrix valued test function Φ. In the sequel
we will write [u] = u+ − u−.

The limit dynamics and LEFM energy are expressed in terms of elastic
moduli λ and μ and fracture toughness G. These are calculated directly from
the nonlocal potential (2.3). Here we have taken the choice Ψ(r) = h(r2) and
the elastic moduli are given by

μ = λ = M
1
4
h′(0) , (5.5)

where the constant M =
∫ 1

0
r2J(r)dr. The elasticity tensor is given by

Cijkl = 2μ

(
δikδjl + δilδjk

2

)
+ λδijδkl, (5.6)

and

Gc =
4
π

∫ 1

0

h(S+)r2J(r)dr. (5.7)
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The limit evolution u0 has bounded Griffith surface energy and elastic
energy, [24] given by∫

D

μ|Eu0(t)|2 +
λ

2
|divu0(t)|2 dx + GH1(Ju0(t)) ≤ C, (5.8)

for 0 ≤ t ≤ T , where Ju0(t) denotes the evolving jump set inside the domain
D, across which the displacement u0 has a jump discontinuity and H1 is one
dimensional Hausdorff measure, see [24]. Because u0 has bounded energy (5.8)
we see that u0 also belongs to SBD2(D). Here SBD2(D) is the set of SBD(D)
functions with square integrable strain Eu and jump set with bounded H1

measure. It has been recently shown in [8] that for u ∈ SBD2(D) the following
holds

H1(Su \ Ju ) = 0. (5.9)

It is remarked that the equality λ = μ appearing in (5.5) is a consequence of
the central force nature of the nonlocal interaction mediated by (2.3). While
non-central force potentials can deliver a larger class of energy-volume-shape
change relations [36] a central force potential is been chosen to illustrate the
ideas.

The symmetry of uε described in Sect. 2.2 together with the crack growth
hypothesis are now used to show u0(t) ∈ Ḣ1(Dt,R

2), a.e. t ∈ (0, T ). The first
lemma that we prove is used to show that the jump set of u0(t) ∈ SBD2(D)
is a subset of Γt, a.e. t ∈ (0, T ) so that u0(t) belongs to Ḣ1(Dt,R

2), a.e.
t ∈ (0, T ).

Lemma 5.1.

lim
εn→0

1
εn

2ω2

∫
D

∫
Hεn (x)∩D

|y − x|
εn

Jεn(|y − x|)S(y,x,uεn(t))−dy ϕ(x) dx

=
∫

D

divu0(x, t)ϕ(x) dx (5.10)

lim
εn→0

1
εn

2ω2

∫
SZεn

∫
Hεn (x)∩D

|y − x|
εn

Jεn(|y − x|)S(y,x,uεn(t))+dy ϕ(x) dx

= C

∫
Ju 0(t)

[u0(x, t)] · nϕ(x)dH1(x) (5.11)

for all scalar test functions ϕ that are differentiable with support in D. Here
[u0(x, t)] denotes the jump in displacement across Ju0(t) and n is the unit
normal to Ju0(t) and points in the vertical direction e2, and C = ω2

∫ 1

0
r2dr.

Proof of Lemma 5.1. It is convenient to make the change of variables y =
x + εξ where ξ belongs to the unit disk at the origin H1(0) = {|ξ| < 1} and
e = ξ/|ξ|. The strain is written

uε(x + εξ) − uε(x)
ε|ξ| := Dε|ξ|

e uε, and

S(y,x,uε(t)) = Dε|ξ|
e uε · e,

(5.12)
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and for infinitely differentiable scalar valued functions ϕ and vector valued
functions w bounded and continuous on D we have

lim
ε→0

D
ε|ξ|
−e ϕ = −∇ϕ · e, (5.13)

and

lim
ε→0

Dε|ξ|
e w · e = Ewe · e (5.14)

where the convergence is uniform in D. We recall S(y,x,uε(t))± defined by
(2.29), (2.30) and write in terms of the new variables ξ and e = ξ/|ξ| to obtain

(Dε|ξ|
e uε(t) · e)− =

{
D

ε|ξ|
e uε(t) · e, if |Dε|ξ|

e uε(t) · e| < Sc = rc√
εn|ξ|

0, otherwise
(5.15)

and

(Dε|ξ|
e uε(t) · e)+ =

{
D

ε|ξ|
e uε(t) · e, if |Dε|ξ|

e uε(t) · e| ≥ Sc = rc√
εn|ξ|

0, otherwise
, (5.16)

with D
ε|ξ|
e uε(t)·e = (Dε|ξ|

e uε(t)·e)−+(Dε|ξ|
e uε(t)·e)+. We extend (Dε|ξ|

e uε ·e)−

by zero when x ∈ D and x + εξ 	∈ D and

1
εn

2ω2

∫
D

∫
Hεn (x)∩D

|y − x|
εn

Jεn(|y − x|)|S(y,x,uεn(t))−|2dy dx

=
∫

D×H1(0)

|ξ|J(|ξ|)|(Dεn|ξ|
e uεn · e)−|2 dξ dx.

(5.17)

Then as in inequality (6.73) of [24] we have that
∫

D×H1(0)

|ξ|J(|ξ|)|(Dεn|ξ|
e uεn · e)−|2 dξ dx < C, (5.18)

for all εn > 0. From this we can conclude there exists a function g(x, ξ) such
that a subsequence

(Dεn|ξ|
e uεn · e)− ⇀ g(x, ξ) (5.19)

converges weakly in L2(D × H1(0),R) where the L2 norm and inner product
are with respect to the weighted measure |ξ|J(|ξ|)dξdx. Now for any positive
number η and any subset D′ compactly contained in Dt we can argue as in
([24] proof of lemma 6.6) that g(x, ξ) = Eu0e · e for all points in D′ with
dist(D′, ∂Dt) > η. Since D′ and η is arbitrary we get that

g(x, ξ) = Eu0e · e (5.20)
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almost everywhere in D. Additionally for any smooth scalar test function ϕ(x)
with compact support in D a straight forward computation gives

lim
εn→0

∫
D×H1(0)

|ξ|J(|ξ|)(Dεn|ξ|
e uεn · e)− dξϕ(x) dx

=
∫

D×H1(0)

|ξ|J(|ξ|)g(x, ξ) dξϕ(x) dx

=
∫

D×H1(0)

|ξ|J(|ξ|)Eu0(x)e · e dξϕ(x) dx

= C

∫
D

divu0(x)ϕ(x)dx,

(5.21)

Here C = ω2

∫ 1

0
r2 J(r) dr and we have used

1
ω2

∫
H1(0)

|ξ|J(|ξ|)eiej dξ = δij

∫ 1

0

r2J(r) dr. (5.22)

On the other hand for any smooth test function ϕ with compact support in D
we can integrate by parts and use (5.13) to write

lim
εn→0

∫
D×H1(0)

|ξ|J(|ξ|)Dεn|ξ|
e uεn · eϕ(x) dξ dx

= lim
εn→0

∫
D×H1(0)

|ξ|J(|ξ|)Dεn|ξ|
−e ϕ(x)uεn · e, dξ dx

= −
∫

D×H1(0)

|ξ|J(|ξ|)u0 · e∇ϕ(x) · e dξ dx

= −C

∫
D

u0 · ∇ϕ(x) dx

= C

∫
D

trEu0ϕ(x) dx,

(5.23)

where Eu0 is the strain of the SBD2 limit displacement u0. Now since u0 is in
SBD its weak derivative is given by (5.4) and it follows on choosing Φij = δijϕ
that ∫

D

trEu0ϕdx =
∫

D

divu0ϕdx +
∫

Ju 0(t)

[u0] · nϕdH1(x), (5.24)

and ∫
D×H1(0)

|ξ|J(|ξ|)Dεn|ξ|
e uεn · e dξϕ(x) dx

=
∫

D×H1(0)

|ξ|J(|ξ|)(Dεn|ξ|
e uεn · e)−dξϕ(x) dx

+
∫

D×H1(0)

|ξ|J(|ξ|)(Dεn|ξ|
e uεn · e)+dξϕ(x) dx

(5.25)
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to conclude

lim
εn→0

∫
D×H1(0)

|ξ|J(|ξ|)(Dεn|ξ|
e uεn · e)+dξϕ(x) dx

= C

∫
Ju 0(t)

[u0] · nϕdH1(x).
(5.26)

On changing variables we obtain the identities:

lim
εn→0

1
ε2n

∫
D

∫
Hεn (x)

|y − x|
εn

Jεn(|y − x|)S(y,x,uεn(t))+ dy ϕ(x) dx

= C

∫
Ju 0(t)

[u0] · nϕdH1(x).
(5.27)

and

lim
εn→0

1
ε2n

∫
D

∫
Hεn (x)

|y − x|
εn

Jεn(|y − x|)S(y,x,uεn(t))− dy ϕ(x) dx

= C

∫
D

divu0(x)ϕ(x)dx,

(5.28)

and Lemma 5.1 is proved.

To prove Theorem 3.1 note first that the sequence {uε}ε>0 converges in
L2(D,R2) to u0 ∈ SBD2(D) and u0 ∈ L̇2(D;R2). On passage to a subse-
quence if necessary it is seen that that {uε}ε>0 converges almost everywhere
to u0. Since the subsequence uε

1 is even with respect to x2 = 0 it is evi-
dent from (5.1) that u0

1 is also even, a.e. with respect to two dimensional
Lebesgue measure and from (5.2) does not jump across the x2 = 0 axis. Simi-
larly since the subsequence uε

2 is odd we find that u0
2 is odd a.e. with respect

to two dimensional Lebesgue measure. From (2.31) and (5.11) of Lemma 5.1
we see that choosing any test function ϕ with supp{ϕ} ⊂⊂ Dt shows that
the jump set Ju0(t) is confined to the x2 = 0 axis and does not intersect
{�0(t) < x1 < a, x2 = 0}. It now follows from (5.9) that u0

2 = 0 a.e. on
{�0(t) < x1 < a, x2 = 0} with respect to one dimensional H1 measure. Now
let D± = {x ∈ D : ±x2 > 0} then on applying Korn’s inequality, there is a
positive constant C for which

‖u0‖2
L2(D±,R2) +

∫
D±

|∇u0|2 dx ≤ C

(
‖u0‖2

L2(D±,R2) +
∫

D±
|Eu0|2 dx

)
,

(5.29)
so u0 ∈ Ḣ1(Dt,R

2) and the theorem is established.

6. Convergence of nonlocal elastodynamics

In this section we give the proofs of Lemmas 3.1, 3.2, 3.3, 3.4, and Theorems
3.2 and 3.3. We begin with the derivation of Theorem 3.3. This is done with the
aid of the following variational identities over properly chosen test spaces. The
first variational identity over the domain D is given in the following lemma.
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Lemma 6.1. For a.e. t ∈ (0, T ) we have

ρ〈ü0,w〉 = −
∫

D

CEu0 : Ew dx, for all w ∈ H1
0 (D,R2), (6.1)

where 〈·, ·〉 is the duality paring between H1
0 (D,R2) and H−1(D,R2).

The next variational identity includes the traction at the domain outer
boundary.

Lemma 6.2. For a.e. t ∈ (0, T ) we have

ρ〈ü0,w〉 = −
∫

D

CEu0 : Ew dx +
∫

∂D

g · w dσ, for all w ∈ Ḣ1(D,R2),

(6.2)
where 〈·, ·〉 is the duality paring between Ḣ1(D,R2) and its Hilbert space dual
Ḣ1(D,R2)′.

The next variational identity applies to the domains L±
β (t) adjacent to

the boundary and set apart from the crack tip.

Lemma 6.3. Given that the field ü0
τ (t) is a bounded linear functional on the

spaces W±(Dβ(τ)) for a.e. t ∈ (τ, T ) we also have the identity

ρ〈ü0
τ ,w〉 = −

∫
L±

β (τ)

CEu0 : Ew dx +
∫

∂D±
β (τ)

g · w dσ,

for all w ∈ W±(Dβ(τ)).
(6.3)

We now prove Theorem 3.3 using Lemmas 3.3 and 3.4 and the variational
identities given above by Lemmas 6.1, 6.2 and 6.3. It is evident from Lemma
6.1 that

ρü0 = div
(
CEu0

)
(6.4)

as elements of H−1(D,R2) and (3.14) of Theorem 3.3 is established. The trac-
tion on ∂D given by (3.15) now follows immediately from Lemmas 3.3 and 6.2.
Similarly the zero traction force acting on the component of ∂Dβ(τ)± lying
on the crack faces given by (3.16) now follows immediately from Lemmas 3.4
and 6.3. This concludes the proof of Theorem 3.3.

Lemmas 3.3 and 3.4 will be shown to follow from a generalized trace
formula on the boundary of a Lipschitz domain Ω. We call the domain Ω a
polygon when it is a Lipschitz domain with smooth curvilinear arcs for edges
Ei, i = 1, . . . M , connected by vertices. We introduce the Sobolev space defined
on Ω given by

H1,0(Ω,R2) =
{
w ∈ H1(Ω,R2) and γw = 0 on a subset of edges

}
, (6.5)

here H1,0(Ω,R2) ⊂ Ḣ1(Ω,R2).

Lemma 6.4. Given a domain Ω with Lipschitz boundary and let u0 be an ele-
ment of Ḣ1(Ω;R2), let f be an element of Ḣ1(Ω,R2)′, and

div
(
CEu0

)
= f (6.6)
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as elements of H−1(Ω,R2). Suppose first that test functions w belong to Ḣ1

(Ω,R2) and define C Eu0n on ∂Ω by

〈C Eu0n, γw〉 =
∫

Ω

C Eu0 : Ew dx + 〈f ,w〉 (6.7)

for all w in Ḣ1(Ω,R2). Then the functional 〈C Eu0n, γw〉 is uniquely defined
for all test functions w in Ḣ1(Ω,R2), hence C Eu0n belongs to H−1/2(∂Ω).

Next suppose Ω is a polygon. Let w belong to H1,0(Ω,R2) and let f be an
element of H1,0(Ω,R2)′ and let div

(
CEu0

)
and f satisfy (6.6) as elements of

H−1(Ω,R2). Define C Eu0n on ∂Ω by

〈C Eu0n, γw〉 =
∫

Ω

C Eu0 : Ew dx + 〈f ,w〉 (6.8)

for all w in H1,0(Ω,R2). The functional 〈C Eu0n, γw〉 is uniquely defined for
all test functions w in H1,0(Ω,R2), hence C Eu0n belongs to the dual space
H

−1/2
00 (∂Ω).

We now prove Lemmas 3.3 and 3.4. From Lemma 6.1

ρü0 = div
(
CEu0

)
, (6.9)

as elements of H−1(Ω,R2). Then we set f = ρü0 and Lemma 3.3 follows
immediately from the first part of Lemma 6.4. Now we see that the domains
L±

β (t) of Lemma 3.4 are polygons. With the hypothesis of lemma 3.4 we apply
Lemma 6.3 and first consider test functions w in W±(Dβ(τ)) that vanish on
the boundary of L±

β (t). Substitution into (6.3) gives

ρü0
τ = div

(
CEu0

)
, (6.10)

as elements of H−1(L±
β (t),R2). Note that w ∈ W±(Dβ(t)) implies that the

restriction of w to L±
β (t) belongs to

H1,0(L±
β (t),R2) =

{
w ∈ H1(L±

β (t),R2) and γw = 0 on ∂L±
}

, (6.11)

so we set we set f = ρü0 and Lemma 3.4 follows immediately from the second
part of Lemma 6.4.

We now prove the lemmas introduced in this section. We begin with
the proof of Lemma 6.4 following [28]. To fix ideas we prove the second part
of Lemma 6.4 noting the first part follows identical lines. First note if u0

belongs to H1(Ω;R2) then
∫
Ω
CEu0 : Ew dx as a map from w ∈ H1,0(Ω;R2)

to R belongs to H1,0(Ω;R2)′. Second note that the trace operator mapping
H1,0(Ω;R2) to H

−1/2
00 (Ω) has a continuous right inverse denoted by τ . We

define g̃ by

〈g̃,v〉 =
∫

Ω

C Eu0 : Eτv dx + 〈f , τv〉 (6.12)

for all v in H
−1/2
00 (∂Ω) to show

〈g̃, γw〉 =
∫

Ω

C Eu0 : Ew dx + 〈f ,w〉 (6.13)
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for all w in H1,0(Ω;R2). To see this pick w in H1,0(Ω;R2) and set w0 =
w − τγw so w0 is in H1

0 (Ω;R2) and from (6.6) we have

−
∫

Ω

CEu0 : Ew0 dx = 〈w0,f〉, (6.14)

so

−
∫

Ω

CEu0 : Ew dx +
∫

Ω

CEu0 : Eτγw dx = 〈w,f〉 − 〈τγw,f〉. (6.15)

Equation (6.13) follows directly from (6.15), (6.12), and manipulation. Now
we show that the definition of g̃ given by (6.12) is unique and independent of
the choice of right inverse (lift) τ . Suppose we have g∗ defined by the lift τ∗

given by

〈g∗,v〉 =
∫

Ω

C Eu0 : Eτ∗v dx + 〈f , τ∗v〉 (6.16)

for all v in H
−1/2
00 (∂Ω). From (6.13) and linearity we get

〈g̃ − g∗, γw〉 = 0, (6.17)

for all w in H1,0(Ω,R2) and uniqueness follows. We define CEu0n = g̃ and
the second part of Lemma 6.4 is proved.

Next we give the proof of Lemma 3.1. First we show that the sequence
{bεn(t)} is uniformly bounded in H1(D;R2)′ for t ∈ [0, T ]. Let χεn = χεn

+ +χεn−
where χεn± are the indicator functions of the body force layers defined in (2.10)
so recalling (2.11) then for any w ∈ H1(D;R2), we have

∫
D

bεn(x, t) · w(x) dx =
∫

D

1
εn

χεn(x)g(x1, t) · w(x) dx

=
∫

D

1√
εn

χεn(x)g(x1, t) · 1√
εn

χεn(x)w(x) dx

≤
(∫

D

1
εn

χεn |g(t)|2 dx

)1/2 (∫
D

1
εn

χεn(x)|w|2 dx

)1/2

≤ 2‖g(t)‖L2(θ,a−θ)Iεn
.

(6.18)

Here Iεn
is given by

Iεn
=

(∫
D

1
εn

χεn(x)|w|2 dx

)1/2

=

(∫ 1

0

∫ a−θ

θ

|w(x1,
b

2
+ εn(y2 − 1))|2dx1dy2

+
∫ 1

0

∫ a−θ

θ

|w(x1,− b

2
+ εn(1 − y2)|2dx1dy2

)1/2

(6.19)



23 Page 26 of 44 R. P. Lipton and P. K. Jha NoDEA

where the change of variables x2 = ± b
2 ∓ εn ± εny2 has been made. From the

change of variable it is evident that the factor Iεn
is bounded above by

Iεn
≤

(∫ 1

0

∫
∂Dδ(y)

|w|2 ds dy

)1/2

(6.20)

where Dδ(y) = {x ∈ D : dist(x, ∂D) > δ(y)} and δ(y) = εn(1 − y), for
0 < y < 1. Since the trace operator is a bounded linear transformation between
H1(Dδ(y),R

2) and L2(∂Dδ(y))2 we have
∫

∂Dδ(y)

|w|2 ds ≤ Cδ(y)‖w‖2
H1(Dδ(y),R2) ≤ Cδ(y)‖w‖2

H1(D,R2). (6.21)

Additionally Cδ(y) depends only on the Lipschitz constant of the boundary
[16] so for the case at hand we see that

sup
y∈[0,1]

{Cδ(y)} < ∞, (6.22)

and from (6.18), (6.20), and (6.22) we conclude that there is a constant C
independent of t and εn such that

|
∫

D

bεn(x, t) · w(x) dx| ≤ C‖w‖2
H1(D,R2), (6.23)

and

sup
εn>0

∫ T

0

‖bεn(t)‖2
H1(D;R2)′dt < ∞. (6.24)

Thus we can pass to a subsequence also denoted by {bεn}∞
n=1 that converges

weakly to b0 in L2(0, T ;H1(D;R2)′). Next we identify the weak limit b0(t)
for a dense set of trial fields. Let w ∈ C1(D,R2) then a change of variables
x2 = ± b

2 ∓ εn ± εny2 gives
∫

D

bεn(x, t) · w(x) dx=
∫

D

1
εn

χεn(x)g(x1, t) · w(x) dx

=
∫ 1

0

∫ a−θ

θ

g(x1, t)e2 · w(x1,
b

2
+ εn(y2 − 1) dx1 dy2

−
∫ 1

0

∫ a−θ

θ

g(x1, t)e2 · w(x1,− b

2
+εn(1−y2) dx1 dy2.

(6.25)
One passes to the εn → 0 limit in (6.25) applying the uniform continuity of w
to obtain

lim
εn→0

∫
D

bεn(x, t) · w(x) dx =
∫

∂D

g · w dσ. (6.26)

Lemma 3.1 now follows noting that C1(D,R2) is dense in H1(D,R2).
We now establish Lemma 3.2. The strong convergence

uεn → u0 strong in C([0, T ]; L̇2(D;R2)) (6.27)
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follows immediately from the same arguments used to establish theorem 5.1
of [24]. The weak convergence

u̇εn ⇀ u̇0 weakly in L2(0, T ; L̇2(D;R2)) (6.28)

follows noting that theorem 2.2 of [24] shows that

sup
εn>0

∫ T

0

‖u̇εn(t)‖2
L2(D;R2)dt < ∞. (6.29)

Thus we can pass to a subsequence also denoted by {u̇εn}∞
n=1 that converges

weakly to u̇0 in L2(0, T ; L̇2(D;R2)).
To prove

üεn ⇀ ü0 weakly in L2(0, T ; Ḣ1(D;R2)′) (6.30)

we must show that

sup
εn>0

∫ T

0

‖üεn(t)‖2
H1(D;R2)′ dt < ∞, (6.31)

and existence of a weakly converging sequence follows. We multiply (2.16) with
a test function w from Ḣ1(D;R2) and integrate over D.

A straightforward integration by parts gives∫
D

üεn(x, t) · w(x)dx

= −1
ρ

∫
D

∫
Hεn (x)∩D

|y − x|∂SWεn(y − x, S(y,x,uεn(t)))S(y,x,w) dydx

+
1
ρ

∫
D

bεn(x, t) · w(x)dx,

(6.32)
and we now estimate the right hand side of (6.32). The first term on the
righthand side is denoted by Iεn and we change variables y = x + εξ, |ξ| < 1,
with dy = ε2ndξ and write out ∂SWε(y − x, S(y,x,uε(t))) to get

Iεn = − 1
ρω2

∫
D×H1(0)

ω(x, εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w · e) dξ dx,

(6.33)

where ω(x, εnξ) is unity if x + εnξ is in D and zero otherwise. We define the
sets

A−
εn

=

{
(x, ξ) in D × H1(0); |Dεn|ξ|

e uεn · e| <
rc√
εn|ξ|

}

A+
εn

=

{
(x, ξ) in D × H1(0); |Dεn|ξ|

e uεn · e| ≥ rc√
εn|ξ|

}
,

(6.34)

with D × H1(0) = A−
εn

∪ A+
εn

. Note that (x, ξ) ∈ A+
εn

is equivalent to (x,y) ∈
SZεn and (x, ξ) ∈ A−

εn
is equivalent to (x,y) 	∈ SZεn . We write

Iεn = Iεn
1 + Iεn

2 , (6.35)
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where

Iεn
1 = − 1

ρω2

∫
D×H1(0)∩A−

εn

ω(x, εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w · e) dξ dx,

Iεn
2 = − 1

ρω2

∫
D×H1(0)∩A+

εn

ω(x, εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w · e) dξ dx,

(6.36)

In what follows we will denote positive constants independent of uεn and w ∈
Ḣ1(D;R2) by C. First note that h is concave so h′(r) is monotone decreasing
for r ≥ 0 and from Cauchy’s inequality, and (5.18) one has

|Iεn
1 | ≤ 2h′(0)C

ρω2

(∫
D×H1(0)∩A−

εn

ω(x, εnξ)|Dεn|ξ|
e w · e)|2 dξ dx

)1/2

,

≤ 2h′(0)C
ρω2

(∫
H1(0)

∫
D

ω(x, εnξ)|Dεn|ξ|
e w · e)|2 dx dξ

)1/2

,

(6.37)

Since x and x + εnξ belong to D we write ξ = |ξ|e where e = ξ/|ξ| and
calculation gives

Dεn|ξ|
e w · e =

∫ 1

0

Ew(x + sεn|ξ|e)e · e ds, (6.38)

with x+sεn|ξ|e ∈ D for 0 < s < 1. Next introduce χD(x+sεn|ξ|e) taking the
value 1, if x + sεn|ξ|e ∈ D and 0 otherwise. Substitution of (6.38) into (6.37)
and application of the Jensen inequality and Fubini’s theorem gives

|Iεn
1 |≤ 2h′(0)C

ρω2

(∫ 1

0

∫
H1(0)

∫
D

χD(x+sεn|ξ|e)|Ew (x+sεn|ξ|e)e · e|2 dx dξ ds

)1/2

,

(6.39)
and we conclude

|Iεn
1 | ≤ C‖w‖H1(D;R2). (6.40)

Elementary calculation gives the estimate (see equation (6.53) of [24])

sup
0≤x<∞

|h′(εn|ξ|x2)2x| ≤ 2h′((rc)2)rc√
εn|ξ| , (6.41)

and we also have (see equation (6.78) of [24])
∫

D×H1(0)∩A+
εn

ω(x, ξ)J(|ξ|) dξ dx < Cεn, (6.42)
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so Cauchy’s inequality and the inequalities (6.38), (6.41), (6.42) give

|Iεn
2 | ≤ 1

ρω2

∫
D×H1(0)∩A+

εn

ω(x, εnξ)|ξ|J(|ξ|)2h′((rc)2)rc√
εn|ξ| |Dεn|ξ|

e w · e| dξ dx,

≤ 1
ρω2

(∫
D×H1(0)∩A+

εn

ω(x, εnξ)|ξ|J(|ξ|) (2h′((rc)2)rc)2

εn|ξ| dξ dx

)1/2

×
(∫

D×H1(0)∩A+
εn

ω(x, εnξ)|ξ|J(|ξ|)|Dεn|ξ|
e w · e|2 dξ dx dt

)1/2

≤ C‖w‖H1(D;R2),

(6.43)
and we conclude that the first term on the right hand side of (6.32) admits
the estimate

|Iεn | ≤ |Iεn
1 | + |Iεn

2 | ≤ C‖w‖H1(D;R2), (6.44)

for all w ∈ H1(D;R2).
It follows immediately from Lemma 3.1 that the second term on the right

hand side of (6.32) satisfies the estimate

1
ρ

∣∣∣∣
∫

D

bεn(x, t) · w(x) dx

∣∣∣∣ ≤ C‖w‖H1(D;R2), for all w ∈ H1(D;R2) (6.45)

From (6.44) and (6.45) we conclude that there exists a C > 0 so that
∣∣∣∣
∫

D

üεn(x, t) · w(x) dx

∣∣∣∣ ≤ C‖w‖H1(D;R2), for all w ∈ Ḣ1(D;R2) (6.46)

so

sup
εn>0

sup
t∈[0,T ]

∫
D
üεn(x, t) · w(x)dx
‖w‖H1(D;R2)

< C, for all w ∈ Ḣ1(D;R2), (6.47)

or
sup

t∈[0,T ]

‖üεn(t)‖H1(D;R2)′ < C, for all εn (6.48)

and (6.31) follows. The estimate (6.31) implies weak compactness and passing
to subsequences if necessary we deduce that üεn ⇀ ü0 weakly in L2(0, T ; Ḣ1

(D;R2)′).
Finally to prove

üεn ⇀ ü0 weakly in L2(0, T ;H−1(D;R2)) (6.49)

we must show that

sup
εn>0

∫ T

0

‖üεn(t)‖2
H−1(D;R2) dt < ∞, (6.50)

and existence of a weakly converging subsequence follows. The proof of (6.49)
follows precisely the same steps as the proof of (6.30). But now we multiply
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(2.16) by test functions w ∈ C∞
c (D,R2), and integrate over D. An integration

by parts gives∫
D

üεn(x, t) · w(x)dx

= −1
ρ

∫
D

∫
Hεn (x)∩D

|y − x|∂SWεn(y − x, S(y,x,uεn(t)))S(y,x,w) dydx

+
1
ρ

∫
D

bεn(x, t) · w(x)dx.

(6.51)
Now we follow identical steps and proceed as before, here using the density of
C∞

c (D,R2) in H1
0 (D;R2), to get

sup
t∈[0,T ]

‖üεn(t)‖H−1(D;R2) < C, for all εn (6.52)

and (6.50) follows. From this we conclude (6.49) and Lemma 3.2 is proved.
In what follows we first prove Lemma 6.2 noting that the proof of Lemma

6.1 follows the same steps. The proof of Lemma 6.1 is briefly summarized
afterwards. To establish Lemma 6.2 we take a test function ϕ(t)w(x) with ϕ ∈
C∞

c (0, T ) and w in C∞(D,R2) orthogonal to rigid body motions. Substituting
this test function into (2.15) and integration by parts in time gives

∫ T

0

ϕ(t)ρ
∫

D

üεn(x, t) · w(x)dx dt

= −
∫ T

0

ϕ(t)
∫

D

∫
Hεn (x)∩D

|y − x|∂SWεn

(y − x, S(y,x,uεn(t)))S(y,xw) dy dx dt

+
∫ T

0

ϕ(t)
∫

D

bεn(x, t) · w(x) dx dt,

(6.53)

The goal is to pass to the εn = 0 limit in this equation to recover (6.2). The
limit of the left hand side of (6.53) follows from Lemma 3.2

lim
εn→0

∫ T

0

ϕ(t)ρ
∫

D

üεn(x, t) · w(x)dxdt =
∫ T

0

ϕ(t) ρ〈ü0(t),w〉 dt. (6.54)

To recover the εn = 0 limit of the first term on the right hand side of (6.53) we
appeal to the bound (6.44) to pass to the limit under the time integral using
Lebesgue dominated convergence. Next apply Lemma 6.5 of [24] to get

lim
εn→0

Iεn = − lim
εn→0

∫
D

∫
Hεn (x)∩D

|y − x|∂SWεn

(y − x, S(y,x,uεn(t)))S(y,x,w) dydx

= − lim
εn→0

2
ω2

∫
D×H1(0)

ω(x, εnξ)|ξ|J(|ξ|)h′(0)

(Dεn|ξ|
e uεn · e)−(Dεn|ξ|

e w · e) dξ dx,

(6.55)
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where (Dε|ξ|
e uε · e)− is defined by (5.16). As indicated in Sect. 5, D

εn|ξ|
e uεn ·

e− ⇀ g(x, ξ) converges weakly in L2(D × H1(0),R2) with respect to the
measure |ξ|J(|ξ|)dξdx and D

εn|ξ|
e w · e → E we · e uniformly on D, so

lim
εn→0

Iεn = − 2
ω2

∫
D×H1(0)

ω(x, εnξ)|ξ|J(|ξ|)h′(0)g(x, ξ)E we · e dξ dx.,

(6.56)
and from (5.20) g(x, ξ) = E u0 e · e and we recover

lim
εn→0

Iεn = −
∫

D

CEu0 : Ew dx, (6.57)

so

lim
εn→0

∫ T

0

ϕ(t) Iεndt = −
∫ T

0

ϕ(t)
∫

D

CEu0 : Ew dx dt. (6.58)

We pass to the limit in the second term on the right hand side of (6.53) using
Lemma 3.1 to obtain

∫ T

0

ϕ(t)ρ〈ü0(t),w〉 dt = −
∫ T

0

ϕ(t)
(∫

D

CEu0 : Ew dx +
∫

∂D

g · w dσ

)
dt.

(6.59)
From the density of C∞(D,R2) in w ∈ Ḣ1(D,R2) we see that (6.59) holds for
all w ∈ Ḣ1(D,R2). Since (6.59) holds for all ϕ ∈ C∞

c (0, T ) we recover (6.2).
We summarize the proof of Lemma 6.1. We multiply (6.51) on both sides

by a test function ϕ(t) with ϕ ∈ C∞
c (0, T ) and integrate in time over (0, T ) to

get
∫ T

0

ϕ(t)ρ
∫

D

üεn(x, t) · w(x)dx dt

= −
∫ T

0

ϕ(t)
∫

D

∫
Hεn (x)∩D

|y − x|∂SWεn

(y − x, S(y,x,uεn(t)))S(y,xw) dy dx dt

+
∫ T

0

ϕ(t)
1
ρ

∫
D

bεn(x, t) · w(x)dx dt.

(6.60)

We now pass to the εn = 0 limit in this equation using (6.49), (6.57) and note
that the last term vanishes for any choice of w ∈ C∞

c (D,R2) as εn → 0. Last
we use the density of C∞

c (D,R2) in H1(D,R2) to recover (6.1) and Lemma
6.1 follows.

We now establish Theorem 3.2 to show that ü0
τ (x, t) is a bounded linear

functional on the spaces W±(Dβ(τ)) for a.e. t ∈ (τ, T ). We illustrate the proof
for w ∈ W+(Dβ(τ)) noting that identical steps hold for w ∈ W−(Dβ(τ)).
Pick τ ∈ (0, T ), suppose τ < t, multiply (2.16) by a trial w ∈ W+(Dβ(τ)) and
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integrating by parts over D gives

ρ

∫
D

üεn(x, t) · w(x) dx

= −
∫

D

∫
Hεn (x)∩D

|y − x|∂SWεn(y − x, S(y,x,uεn(t)))S(y,x,w) dy dx

+
∫

D

bεn(x, t) · w(x) dx .

(6.61)
Now we show that üεn(t) is bounded in W+(Dβ(τ))′ uniformly for all t ∈ (τ, T )
and 0 < εn < β/2. As before the first term on the righthand side is denoted
by Iεn and we change variables y = x+ εξ, |ξ| < 1, with dy = ε2ndξ and write
out ∂SWε(y − x, S(y,x,uε(t))) to get

Iεn = − 1
ω2

∫
D×H1(0)

ω(x, εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w · e) dξ dx,

(6.62)

where ω(x, ξ) is unity if x + εnξ is in D and zero otherwise. Note that the
boundary component of ∂D+

β (τ) given by {x ∈ D : �(0) ≤ x1 ≤ �0(τ)−β, x2 =
0} is a subset of the failure zone centerline Cεn(t) so for x and y in FZεn(t)
we see that f εn(y,x) = 0 or equivalently

h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e) = 0 (6.63)

for x and y = x + εnξ in FZεn(t). Then for for n large enough so that
�0(τ) − β < �εn(t) and 0 < εn < β/2 and for test functions w ∈ W+(Dβ(τ))
the product can be written as

h′
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w · e)

= h′
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−)(Dεn|ξ|

e w · e)

= χ(x,x + εnξ)h′
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−)

× (Dεn|ξ|
e w · e),

(6.64)

where

χ(x,x + εnξ)

=

{
0, if the points x, x + εnξ are separated by {0 ≤ x1 ≤ �0(τ) − β, x2 = 0}
1, otherwise.

(6.65)
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(Here we say that x, x + εnξ are separated by {0 ≤ x1 ≤ �0(τ) − β, x2 = 0}
when it is impossible to connect these two points by a line segment without
crossing {0 ≤ x1 ≤ �0(τ) − β, x2 = 0}.) Then Iεn becomes

Iεn = − 1

ω2

∫
D×H1(0)

ω(x, εnξ)χ(x,x + εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||(Dεn|ξ|

e u εn · e)−|2
)

× 2((Dεn|ξ|
e u εn · e)−)(Dεn|ξ|

e w · e) dξ dx.

(6.66)
We can now bound (6.66) as in (6.37) and change the order of integration to
arrive at the upper bound

|Iεn | ≤ 2h′(0)C

ω2

(∫
H1(0)

∫
D

ω(x, εnξ)χ(x,x + εnξ)|Dεn|ξ|
e w · e|2 dx dξ

)1/2

.

(6.67)
We change to slicing variables and write x = y + re, where e is on the unit
circle and y ∈ Πe where Πe is the subspace perpendicular to e and r ∈ R. We
set De

y = {r ∈ R : y + re ∈ Dβ(τ)} and De = {y ∈ Πe : De
y 	= ∅} so

|Iεn | ≤ 2h′(0)C

ω2

(∫
H1(0)

∫
De

∫
De

y

χ(y + re,y + (r + εn|ξ|)e)|Dεn|ξ|
e w · e|2 dr dy dξ

)1/2

.

(6.68)
We use the fact that functions in Sobolev spaces are absolutely continuous for
a.e. lines to write (6.38) for w ∈ W+(Dβ(τ)) and

|Iεn |

≤ 2h′(0)C
ω2

(∫
H1(0)

∫
De

∫
De

y

χ(y + re,y + (r + εn|ξ|)e)|
∫ 1

0

Ew(y + (r + sεn|ξ|)e)e · e ds|2 dr dy dξ

)1/2

≤ 2h′(0)C
ω2

(∫
H1(0)

∫ 1

0

∫
De

∫
De

y

χ(y + re,y + (r + εn|ξ|)e)|Ew(y + (r + sεn|ξ|)e)e · e|2 dr dy ds dξ
)1/2

.

(6.69)
where Jensen inequality and Fubini’s theorem have been applied in the last line.
Introducing χDβ(τ)(x) = 1 if its argument lies in Dβ(τ) and zero otherwise,
applying χ(y+ re,y+ (r + εn|ξ|)e) ≤ χDβ(τ)(y+ re)χDβ(τ)(y+ (r + sεn|ξ|)e)
and changing to original variables gives

|Iεn | ≤ 2h′(0)C
ω2

(∫ 1

0

∫
H1(0)

∫
D

χDβ(τ)(x)χDβ(τ)

(x + sεn|ξ|e)|Ew(x + sεn|ξ|e)e · e|2 dx dξ ds
)1/2

.

(6.70)

From this we conclude

|Iεn | ≤ C‖w‖H1(Dβ(τ);R2). (6.71)
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Arguments identical to the proof of Lemma 3.1 show that the sequence bεn is
uniformly bounded in W+(Dβ(τ))′ for all τ ∈ [0, T ] and εn > 0 and together
with (6.71) one concludes

sup
t∈(τ,T )

‖üεn(t)‖W+(Dβ(τ);R2)′ < C, for β/2 > εn > 0. (6.72)

Hence ∫ T

τ

‖üεn(t)‖2
W+(Dβ(τ);R2)′ dt < ∞ for β/2 > εn > 0, (6.73)

and passing to a subsequence if necessary gives a v(t) in L2(τ, T ; W+(Dβ(τ))′)
such that üεn ⇀ v weakly in L2(τ, T ; W+(Dβ(τ)′).

We finish the proof by showing v = ü0
τ . To see this note uεn ∈ C2([0, T ];

L2(D,R2)) and for ϕ ∈ C∞
c (τ, T ) and for w ∈ W+(Dβ(τ)) we have∫ T

τ

∫
D

üεn · w dxϕ(t) dt = −
∫ T

τ

∫
D

u̇εn · w dx ϕ̇(t) dt (6.74)

Passing to the εn = 0 limit using Lemma 3.2 applied to the right hand side
gives∫ T

τ

〈v,w〉ϕ(t)dt = −
∫ T

τ

∫
D

u̇0·w ϕ̇(t)dx dt, for all w ∈ W+(Dβ(τ)) (6.75)

and we deduce from (6.75) that v = ü0
τ as elements of W+(Dβ(τ))′. Identical

arguments show that ü0
τ ∈ W−(Dβ(τ))′ and Theorem 3.2 is proved.

We now prove Lemma 6.3. We illustrate the proof for w(x) ∈ W+(Dβ(τ))
noting an identical proof holds for w ∈ W−(Dβ(τ)). Multiply both sides of
(6.61) by ϕ(t) ∈ C∞

c (τ, T ) and integrate with respect to t over (τ, T ) to obtain∫ T

τ

ρ

∫
D

üεn(x, t) · w(x) dxϕ(t) dt

= −
∫ T

τ

∫
D

∫
Hεn (x)∩D

|y − x|∂SWεn(y − x, S(y,x,uεn(t)))S(y,x,w)

y dxϕ(t) dt

+
∫ T

τ

∫
D

bεn(x, t) · w(x) dxϕ(t) dt

(6.76)
The goal is to pass to the εn = 0 limit in this equation to recover (6.3). The
limit of the left hand side of (6.76) follows from Theorem 3.2

lim
εn→0

∫ T

τ

ϕ(t)ρ
∫

D

üεn(x, t) · w(x)dxdt =
∫ T

τ

ϕ(t) ρ〈ü0
τ (t),w〉 dt. (6.77)

The first term on the right hand side of (6.76) is written∫ T

τ

ϕIεn dt. (6.78)

We can recover the εn = 0 limit of the first term on the right hand side of
(6.76) by appealing to the bound (6.71) to pass to the limit under the time
integral using Lebesgue dominated convergence once we show that for every
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w ∈ W+(Dβ(τ)) the bounded sequence {Iεn(t)} has a limit for a.e. t ∈ (τ, T ).
To see this we apply (6.64) to get that

Iεn(t) = −
∫

D

∫
Hεn (x )∩D

|y − x|∂SWεn

× (y − x, S(y ,x,u εn(t)))S(y ,x,w ) dydx

= − 1

ω2

∫
D×H1(0)

ω(x, εnξ)χ(x,x + εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||(Dεn|ξ|

e u εn · e)−|2
)

× 2((Dεn|ξ|
e u εn · e)−)(Dεn|ξ|

e w · e) dξ dx.

(6.79)
The integrand is the product of two factors (note ω(x, εnξ)χ(x,x + εnξ) =
ω(x, εnξ)2χ(x,x + εnξ)2) and we show that on passing to a subsequence if
necessary the first factor

ω(x, εnξ)χ(x,x + εnξ)h′
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−)

⇀ 2h′(0)g(x, ξ, t)) (6.80)

weakly in L2(D × H1(0),R) and the second factor

ω(x, εnξ)χ(x,x + εnξ)Dεn|ξ|
e w · e → Ew(x)e · e. (6.81)

strong in L2(D × H1(0),R). Here as in Sect. 5 the L2 norm and inner product
are with respect to the weighted measure |ξ|J(|ξ|)dξdx. Hence for fixed t we
suppose that (6.80) and (6.81) hold to conclude that for any cluster point of
{Iεn(t)} there is a subsequence

lim
εn′ →0

Iεn′ (t) = −
∫

D

∫
H1(0)

|ξ|J(|ξ|)2h′(0)g(x, ξ, t))Ew(x)e · e dξ dx

= −
∫

D

∫
H1(0)

2|ξ|J(|ξ|)h′(0)(Eu0(t,x)e · e)(Ew(x)e · e) dξ dx

= −
∫

D

CEu0(t,x) : Ew(x) dx,

(6.82)

where the second line follows from (5.20) and the third line follows from a
straightforward calculation, see, e.g., [24]. One obtains the same limit for sub-
sequences of all possibly distinct cluster points of {Iεn(t)} to conclude there
is one cluster point and we have identified limεn→0 Iεn(t) for a.e. t ∈ (0, T ).

To conclude the weak and strong convergences (6.80) and (6.81) are es-
tablished. First note that h′(r) is monotone decreasing in r so h′

(
εn|ξ||(Dεn|ξ|

e

uεn · e)−|2) ≤ h′(0) and from (5.18) we have (Dεn|ξ|
e uεn · e)− is bounded in

L2(D × H1(0),R) so the first factor is bounded in L2(D × H1(0),R) uni-
formly in εn and has a subsequence that converges weakly to a limit written
K(x, ξ, t). Application of Lemma 6.5 of [24] and (5.19) allows us to identify
K(x, ξ(t)) = 2h′(0)g(x, ξ, t)) where we have explicitly written the time de-
pendence of g(x, ξ) and weak convergence is established. To show the strong



23 Page 36 of 44 R. P. Lipton and P. K. Jha NoDEA

convergence (6.81) we form

Aεn =
1
ω2

∫
D×H1(0)

ω(x, εnξ)χ(x,x + εnξ)|ξ|J(|ξ|)

×
∣∣∣(Dεn|ξ|

e w · e) − Ew(x)e · e
∣∣∣2 dξ dx.

(6.83)

Estimating as in (6.67) – (6.70) we get
lim

εn→0
Aεn

≤ lim
εn→0

∫ 1

0

1
ω2

∫
D×H1(0)

χDβ(τ)(x)χDβ(τ)(x + sεnξ)|ξ|J(|ξ|)

|Ew(x + sεn|ξ|e) − Ew(x)e · e|2 dξ dx ds

=
∫ 1

0

∫
Dβ(τ)

s2 lim
εn→0

1
s2ω2

∫
H1(0)

χDβ(τ)(x + sεnξ)|ξ|J(|ξ|)

|Ew(x + sεn|ξ|e) − Ew(x)e · e|2 dξ dx ds

= 0,

(6.84)

where we use Lebesgue dominated convergence to interchange limit and in-
tegral noting that the point wise limit is 0 and holds a.e. x ∈ Dβ(τ) at the
Lebesgue points

lim
εn→0

1
s2ω2

∫
H1(0)

|ξ|J(|ξ|) |Ew(x + sεn|ξ|e) − Ew(x)e · e|2 dξ = 0, (6.85)

This establishes strong convergence for w ∈ W+(Dβ(τ)). Collecting results
gives that the limit of the first term on the right hand side of (6.61) is

lim
εn→0

∫ T

0

ϕ(t) Iεndt = −
∫ T

0

ϕ(t)
∫

D

CEu0 : Ew dx dt. (6.86)

Passing to the limit on the last term of the right hand side of (6.61) and
arguments similar to before give

lim
εn→0

∫ T

τ

∫
D

bεn · w dxϕ(t) dt =
∫ T

τ

∫
∂D

g · w dσ ϕ(t) dt. (6.87)

and we conclude that∫ T

τ

ϕ(t)ρ〈ü0(t),w〉 dt = −
∫ T

τ

ϕ(t)
(∫

D

CEu0 : Ew dx

+
∫

∂D

g · w dσ

)
dt,

(6.88)

for all w ∈ W+(Dβ(τ)) and Lemma 6.3 is proved.

7. Weak solution of the wave equation on Dt

Theorem 3.4 is proved in this section. From Theorem 3.1 and Lemma 3.2 the
limit displacement u0 belongs to V. From Lemma 2.8 and Remark 2.9 of [12]
we have that if u ∈ V and (3.19) holds for every ϕ ∈ C∞

c ((0, T );VT ) with
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ϕ(t) ∈ Vt then u is a weak solution of (3.18). Motivated by this we begin by
selecting a class of trial fields that are convenient to work with. For t ∈ [0, T ]
set sβ(t) = t − β for some fixed number β ∈ (0, t). Given w ∈ C∞

c ((0, T );VT )
with w ∈ Vt for t ∈ (0, T ), set w̃(t) = w(sβ(t)) ∈ Vsβ(t) ⊂ Vt. Substitution of
this trial in (2.15) gives the identity

ρ

∫ T

0

∫
D

u̇εn(t) · ˙̃w(t)dx dt

=
∫ T

0

∫
D

∫
Hεn (x)∩D

|y − x|∂SWεn(y − x,

S(y,x,uεn(t)))S(y,x, w̃(t)) dydx dt

−
∫ T

0

∫
D

bεn(t) · w̃(t) dx dt, for εn > 0.

(7.1)

Here we will pass to the εn = 0 limit in this identity to obtain an εn = 0
identity. Then on passing to the β → 0 limit in each term we will show that u0

is a weak solution. We begin by understanding the limit of the middle term in
(7.1) for a given sequence indexed by εn. We write out the integrand appearing
under the time integral

Iεn(t, w̃(t)) =
∫

D

∫
Hεn (x)∩D

|y − x|∂SWεn

× (y − x, S(y,x,uεn(t)))S(y,x, w̃(t)) dy dx (7.2)

and identify the point-wise limit limεn→0 Iεn(t, w̃(t)) for a.e. t ∈ (0, T ). For
this choice of test function we change variables as in (6.33) to obtain

Iεn(t, w̃) = Iεn
1 (t, w̃) + Iεn

2 (t, w̃), (7.3)

where

Iεn
1 (t, w̃) =

1
ω2

∫
D×H1(0)

ω(x, εnξ)|ξ|J(|ξ|)h′
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−)(Dεn|ξ|

e w̃ · e) dξ dx,

Iεn
2 (t, w̃) =

1
ω2

∫
D×H1(0)∩{SZεn (t)\FZεn (t)}∩A+

εn

ω(x, εnξ)|ξ|J(|ξ|)h′

×
(
εn|ξ||Dεn|ξ|

e uεn · e|2
)

× 2(Dεn|ξ|
e uεn · e)(Dεn|ξ|

e w̃ · e) dξ dx.

(7.4)

As in (6.66) we have

Iεn
1 (t, w̃) =

1
ω2

∫
D×H1(0)

ω(x, εnξ)χ̃(x,x + εnξ)|ξ|J(|ξ|)h′

×
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−)(Dεn|ξ|

e w̃ · e) dξ dx,

(7.5)
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where

χ̃(x,x + εnξ)

=

{
0, if the points x, x+εnξ are separated by {0≤x1 ≤�0(t−β), x2 =0}
1, otherwise,

(7.6)

for n large enough so that �0(β − t) < �εn(t) and 0 < εn < (�0(t)−�0(t−β))/2,
where β ∈ (0, t). (Here we have used that �0(t) is continuous and strictly
increasing.) As in the proof of Lemma 6.3 the integrand is the product of two
factors such that the first factor

ω(x, εnξ)χ̃(x,x + εnξ)h′

×
(
εn|ξ||(Dεn|ξ|

e uεn · e)−|2
)

× 2((Dεn|ξ|
e uεn · e)−) ⇀ 2h′(0)g(x, ξ, t))

(7.7)

weakly in L2(D × H1(0),R) and the second factor

ω(x, εnξ)χ̃(x,x + εnξ)Dεn|ξ|
e w̃ · e → Ew̃(x)e · e (7.8)

strong in L2(D × H1(0),R). Here g(x, ξ, t) is the weak limit given by (5.19)
with the time dependence explicitly written. Hence we conclude using the same
arguments given in the proof of Lemma 6.3 that

lim
εn→0

Iεn
1 (t, w̃) =

∫
D

CEu0(t) : Ew̃ dx. (7.9)

From hypothesis 3.1, noting that �0(t) is strictly increasing and continuous,
we have that |{SZεn \FZεn}| ≤ C|εn|2. We estimate Iεn

2 (t, w̃) recalling (6.34)
and (6.41) to obtain

|Iεn

2 (t, w̃ )|

≤ 1

ρω2

∫
D×H1(0)∩{SZεn (t)\F Zεn (t)}∩A+

εn

ω(x, εnξ)|ξ|J(|ξ|) 2h′((rc)2)rc

√
εn|ξ| |Dεn|ξ|

e w̃ · e| dξ dx,

≤ 1

ρω2

(∫
D×H1(0)∩{SZεn (t)\F Zεn (t)}

ω(x, εnξ)|ξ|J(|ξ|) (2h′((rc)2)rc)2

εn|ξ| dξ dx

)1/2

×
(∫

D×H1(0)∩{SZεn (t)\F Zεn (t)}
ω(x, εnξ)|ξ|J(|ξ|)|Dεn|ξ|

e w̃ · e|2 dξ dx dt

)1/2

≤ C
√

|εn|‖w̃‖H1(Dβ(t);R2).

(7.10)
Here the last inequality is obtained using slicing variables noting that w̃ ∈
H1(Dβ(t)). From this we conclude that limεn→0 Iεn(t, w̃) exists and

lim
εn→0

Iεn(t, w̃) =
∫

D

CEu0(t) : Ew̃ dx, (7.11)
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for w̃ ∈ Vsβ(t) for a.e. t ∈ (0, T ). Arguments identical to the Proof of Theorem
3.2 show that for w̃ ∈ Vsβ(t) we have

|Iεn(t, w̃)| ≤ C‖w̃‖Vsβ(t) . (7.12)

We form ∫ T

0

Iεn(t, w̃(t)) dt. (7.13)

One then sees from Definition 3.1 that ‖w̃(t)‖Vsβ(t) is integrable and from
(7.12) we can apply the Lebesgue dominated convergence theorem to conclude

lim
εn→0

∫ T

0

Iεn(t, w̃(t)) dt =
∫ T

0

∫
D

CEu0(t) : Ew̃(t) dx dt. (7.14)

It is first noted that Lemma 3.1 can be extended in a straight forward
way to the present context. Applying this to the last term in (7.1) gives

− lim
εn→0

∫ T

0

∫
D

bεn(t) · w̃(t) dx dt = −
∫ T

0

∫
∂D

g(t) · w̃(t) dσ dt. (7.15)

We apply Lemma 3.2 to the first term of (7.1) and pass to a subsequence if
necessary to find that

lim
εn→0

ρ

∫ T

0

∫
D

u̇εn(t) · ˙̃w(t)dx dt = ρ

∫ T

0

∫
D

u̇0(t) · ˙̃w(t)dx dt. (7.16)

On again passing to a subsequence if necessary we recover

−
∫ T

0

ρ

∫
D

u̇(t) · ˙̃w(t) dx dt +
∫ T

0

∫
D

CEu(t) : Ew̃(t) dx dt

=
∫ T

0

∫
∂D

g(t) · w̃(t) dσ dt, (7.17)

where w̃(t) = w(sβ(t)) = w(t − β) ∈ Vsβ(t) for a.e. t ∈ [0, T ]. Given that
w(t) ∈ C∞

c (0, T ;VT ) we see that

lim
β→0

ρ

∫ T

0

∫
D

u̇0(t) · ẇ(t − β)dx dt = ρ

∫ T

0

∫
D

u̇0(t) · ẇ(t)dx dt. (7.18)

Similarly

− lim
β→0

∫ T

0

∫
∂D

g0(t) · w̃(t) dσ dt = −
∫ T

0

∫
∂D

g(t) · w(t) dσ dt. (7.19)

To finish the proof we show limβ→0 w(sβ(t)) = w(t) in Vt, a.e. for t ∈ [0, T ].
We use the following lemma proved in [10].

Lemma 7.1. Let {Vt}t∈[0,T ] be an increasing family of closed linear subspaces
of a separable Hilbert space V . Then, there exists a countable set S ⊂ [0, T ]
such that for all t ∈ [0, T ] \ S, we have

Vt =
⋃
s<t

Vs. (7.20)
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Observe that ⋃
0<β

Vsβ(t) =
⋃
s<t

Vs, (7.21)

so limβ→0 w(sβ(t)) = w(t) in Vt, a.e. for t ∈ [0, T ], hence

lim
β→0

∫
D

CEu0(t) : Ew̃(t) dx =
∫

D

CEu0(t) : Ew(t) dx. (7.22)

Since u0 ∈ V it is also clear from Cauchy’s inequality applied to (7.11) that
for β > 0 that ∣∣∣∣

∫
D

CEu0(t) : Ew̃(t) dx

∣∣∣∣ ≤ C‖w(t)‖VT
, (7.23)

and

lim
β→0

∫ T

0

∫
D

CEu0(t) : Ew̃(t) dx dt =
∫ T

0

∫
D

CEu0(t) : Ew(t) dx dt. (7.24)

follows from the Lebesgue dominated convergence theorem. Collecting results
we have

−
∫ T

0

ρ

∫
D

u̇(t) · ẇ(t) dx dt +
∫ T

0

∫
D

CEu(t) : Ew(t) dx dt

=
∫ T

0

∫
∂D

g(t) · w(t) dσ dt, (7.25)

for all w ∈ C∞
c ((0, T );VT ) with w(t) ∈ Vt and Theorem 3.4 is proved.

8. Conclusions

In this paper we use a double well energy within a peridynamic formulation.
The advancing crack is prescribed as a softening zone followed by a failure zone
in the neighborhood of a line at the center of a rectangular specimen starting
from an initial crack. Symmetric forces and boundary conditions are imposed,
consistent with the assumption of a crack growing on a line and moving into
the specimen. The length of the failure zone and softening zone are prescribed
at each time and is increasing with time. We pass to the ε → 0 limit along a
subsequence of displacements uε to find the boundary value problem satisfied
by the limit displacement u0. The limit displacement u0(x, t) satisfies the
boundary conditions of the dynamic brittle fracture problem given by

• Prescribed inhomogeneous traction boundary conditions.
• Balance of linear momentum as described by the linear elastic wave equa-

tion.
• Zero traction on the sides of the evolving crack.
• Displacement jumps can only occur inside the crack set Γt.

In this way the boundary value problem for the elastic field for dynamic Linear
Elastic Fracture Mechanics (LEFM) is recovered as described in [3,17,32,38].
Moreover the limit displacement u0 is a weak solution of the wave equation on
the time dependent domain Dt containing the running crack. This establishes
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a rigorous connection between the nonlocal fracture formulation using a peri-
dynamic model derived from a double well potential and the wave equation
posed on cracking domains given in [12].
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