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Abstract. An isoperimetric inequality for the torsional rigidity of imperfectly bonded, fiber rein-
forced cylinders is found. The fiber cross sections can be simply or multiply connected. The imperfect
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1. Introduction

We consider cylinders reinforced with cylindrical fibers of greater shear stiffness.
We suppose that the cross sections of the cylinder and fibers are uniform. The
part of the cylinder cross section occupied by the union of reinforcement fibers is
denoted byAr . The remaining part of the cylinder cross section containing more
compliant material is denoted byAm. The cylinder cross section is denoted by�
and� = Ar ∪ Am ∪ J , whereJ is the interface between the reinforcement fibers
and the more compliant material. It is assumed that the cylinder cross section is
simply connected while each fiber cross section can be simply or multiply con-
nected. The fibers are taken to be imperfectly bonded to the surrounding material.
The area occupied by the union of the fiber cross sections is denoted byθr . The
area occupied by the more compliant material is denoted byθm. We investigate the
problem of simultaneously finding the cylinder cross section, fiber configuration,
and cross-section of each fiber that yields the maximum torsional rigidity. The only
constraint is that we search for the best design over all cylinder cross sections and
fiber configurations withθr andθm prescribed.

Problems of this type are well known and were investigated by B. de Saint-
Venant [9], who proposed in 1856 that among all cylinders with given cross-sectional
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area that the greatest torsional rigidity is obtained by a cylinder with circular cross-
section. This proposition was proven by G. Polya in (1948), (see [7]), who with A.
Weinstein, extended this result to cylinders with multiply connected cross-sections
[8]. For perfectly bonded fiber reinforced cylinders, the results of A. Alvino and
G. Trombetti (1985) and C. Voas and D. Yaniro (1987) show that a cylinder with
circular cross section composed of a centered fiber of circular cross section made
from the compliant material reinforced by an outer annular fiber of stiff material
gives the maximum torsional rigidity: see, [2, 10]. This result is naturally con-
sistent with the result of Polya and Weinstein (1950) who showed that among all
multiply connected cylindrical cross-sections that the annulus yields the maximum
torsional rigidity. In this note we show that a similar assertion persists in the case
of reinforcement using imperfectly bonded fibers when the fibers can be multiply
connected as well as simply connected. It should be pointed out that if we do not
allow for the presence of multiply connected fibers, i.e., we reinforce with simply
connected fibers only, then the problem of finding the optimal fiber and cylinder
configuration becomes dependent on the degree of imperfect bonding and the fiber
size. This is shown by the author in [5].

Imperfect bonding or partial adhesion on the fiber surface is often caused by
interfacial damage due to service. Imperfect bonds are characterized by the loss
of continuity in the displacement across the interface between different elastic
materials. In this treatment partial adhesion is modeled by an interfacial surface
across which the tangential components of the displacement are discontinuous.
The traction is assumed continuous across the interface and the relative tangen-
tial displacement is proportional to the tangential traction. No inter-penetration
between the fiber and surrounding material is allowed and the normal component
of the displacement is continuous across the interface. The stiffness of the inter-
face is characterized by the parameter ‘α’, relating the tangential traction to the
relative tangential displacement. This parameter has dimensions of shear stiffness
per unit length and ranges between zero and infinity. The limiting case ‘α = ∞’,
corresponds to perfect bonding for which the displacement is continuous across
the interface. The case of noadhesion along directions parallel to the interface is
captured in the limit ‘α = 0’. This interface model was used by Lene and Leguillon
[4] in their treatment of the softening of effective moduli arising from damage.
Flexible interface models similar to the type treated here can be found in the work
of Jones and Whittier (1967). A comprehensive treatment of interface models as
they relate to imperfect bonding is provided in the recent book of Aboudi [1].

We suppose that cylinder is of lengthh with generators parallel to thex3 axis.
The cylinder cross section,�, is a simply connected domain with Lipschitz con-
tinuous boundary in thex1-x2 plane. We suppose that all fibers run the length of the
cylinder and that each fiber is a cylinder of constant cross section with generators
parallel to thex3 axis. The boundary of each fiber is assumed Lipschitz continuous.
Both the fibers and nonreinforced parts of the cylinder are assumed to be made from
linearly elastic isotropic material. The shear moduli of the fibers and surrounding
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material are denoted byGr andGm respectively. The fibers are assumed to provide
reinforcement and so we setGr > Gm. The displacement inside the cylinder is
given by,u = (u1, u2, u3) and the associated 3× 3 stress tensor is denoted byσij .
We fix coordinates so that the base of the cylinder lies on thex3 = 0 plane and the
x3 axis lies within the shaft. The sides of the cylinder are kept traction free and we
fix u1 = u2 = 0 andσ33 = 0 on the base of the cylinder. The cylinder is subjected
to a twist of angleθ per unit length. Atx3 = h we haveu1 = −θhx2, u2 = θhx1,
with σ33 = 0. The torsional rigidity is the ratio between the resultant torsional
moment over the cross section� and the twist per unit lengthθ . Denoting the
torsional rigidity byTα(Ar,�) we have

θTα(Ar,�) =
∫
�

(x1σ32− x2σ31)dx. (1.1)

Here dx = dx1dx2.
One naturally expects that the torsional rigidity of an imperfectly bonded fiber

reinforced cylinder is less than the torsional rigidity when the fibers are perfectly
bonded. However, equality holds for a cylinder of circular cross section, made up of
a centered circular cross section of compliant material surrounded by stiff material:
see Section 3. Indeed, when the cylinder cross section has a radius ofR and the
radius of the cross section of compliant material isa, the torsional rigidity is given
by:

πGr

2
(R4− a4)+ πGm

2
a4, (1.2)

this is computed in Section 3.
Formula (1.2) shows that the torsional rigidity for this configuration is inde-

pendent of the tangential interfacial stiffness ‘α’. This is due to the fact that the
traction vanishes at the matrix-fiber interface: see Section 3. Formula (1.2) is nat-
urally found to give the torsional rigidity for this configuration when the fibers are
perfectly bonded to the surrounding material.

We consider the problem of finding the cylinder cross section, the cross section
of each reinforcement fiber, and fiber configuration that yields the maximum tor-
sional rigidity. Each admissible design is specified by a simply connected cylinder
cross section reinforced with a finite number of fiber cross sections. Here the fiber
cross sections can be simply or multiply connected. The only constraint is thatθr
andθm are prescribed. Here we place no lower bound on the size of the fibers nor
do we place any constraint on the number of fibers appearing in any design. The
main result of this paper is the following.

THEOREM 1.1. Isoperimetric inequality.Of all fiber reinforced cylinders, for
whichθr andθm are prescribed, the cylinder with circular cross section composed
of a centered circular cross section of compliant material reinforced with an outer
annular fiber of stiff material has the maximum torsional rigidity.
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Let theπR2 be the area of the cylinder cross-section andπ(R2−a2) = θr , then
the theorem asserts that

Tα(Ar,�) 6
πGr

2
(R4− a4)+ πGm

2
a4. (1.3)

It should be noted that if we restrict the fiber cross sections to be simply con-
nected then the problem of finding the optimal fiber and cylinder configuration
becomes dependent on the degree of imperfect bonding and the fiber size [5]. In
Lipton (1998) it is shown that the optimal configuration depends upon the degree
of imperfect bonding through the parameter ‘Rcr’, whereRcr = α−1/(G−1

m −G−1
r ).

The dependence of the optimal design on the fiber size is given by thesurface
traction to bulk stress quotientintroduced in Lipton (1998). Thesurface traction to
bulk stress quotientρ is a geometric parameter intrinsic to the fiber shape and is a
measure of the fiber’s response to anti-plane shear. When the total cross-sectional
area of fibers is less thanπR2

cr andRcr × ρ > 1 for each fiber, then the optimal
cylinder and shaft configuration is given by a circular cylinder reinforced by a
centered circular fiber composed of the stiffer material surrounded by the more
compliant material: see, ([5], Theorem 1.6).

The variational formulation of the torsional rigidity given in terms of stress
potentials is described in Section 2. The isoperimetric inequality is proved in Sec-
tion 3.

2. The Torsion Boundary Value Problem and a Variational Formulation for
the Torsional Rigidity

We consider a cylinder reinforced with a finite number of fibers. The union of
all interfaces between fibers and surrounding material is written as0. The jump
in a quantity ‘q’ across0 is denoted by[q] = qr − qm, whereqr is the trace of
the quantity on the reinforcement fiber side andqm is the trace on the compliant
material side. On the interface, the elastic displacement is decomposed into normal
and tangential components given byun = u ·n anduτ = u−(u ·n)n, wheren is the
unit normal pointing out of the fiber domain. The stress tensor inside the composite
shaft is denoted byσij and on the fiber surface the traction is decomposed into
normal and tangential components given byσn = σijninj and (στ )i = σijnj −
(σklnknl)ni. Inside each phase we have the equilibrium condition

∂jσij = 0, (2.1)

and on the interface we have the imperfect bonding conditions described by

[un] = 0 on 0, (2.2)

[σijnj ] = 0 on 0, (2.3)
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and

στ = −α[uτ ] on 0. (2.4)

The constitutive law is given byσ = Ce(u), wheree(u) is the strain tensor
given bye(u) = (∇u+∇ut )/2 andC is the isotropic elastic tensor taking different
values in each phase. The elasticity tensor is specified by bulk and shear moduli
κr andGr inside the fibers and outside the fibers byκm andGm. The equilibrium
condition (2.1) together with the constitutive law, interface conditions (2.2–2.4),
and boundary conditions given in Section 1 constitute a well posed boundary value
problem for the elastic displacement, see Lipton (1998). The solution is easily seen
to be unique up to a constant translation parallel to the axis of the shaft.

Proceeding as in the perfectly bonded case we find that the solution is of Saint-
Venant type. That is the displacement in the shaft is given by

u1 = −θx3x2, u2 = θx3x1 (2.5)

and

u3 = θw(x1, x2). (2.6)

The functionw(x1, x2) is analogous to the warping function appearing in the
torsion problem with perfectly bonded interfaces. However, unlike the perfectly
bonded case the warping function introduced here can be discontinuous across
the bi-material interface. To make this precise we consider the intersection of the
interface0 with the cylinder cross section�. This set is preciselyJ . We allow the
warping function to have jump discontinuities acrossJ . The set of all points in�
not onJ is denoted by�/J . The warping function is assumed to belong to the
space of square integrable functions with square integrable first derivatives on the
region�/J . This space is denoted byH 1(�/J ).

Equations (2.5) and (2.6) imply that the only nonzero components of the strain
tensor are given by

e13 = θ

2
(∂x1w − x2) and e23 = θ

2
(∂x2w + x1) in �/J. (2.7)

The nonzero components of the stress tensor are

σ13 = θG(x)(∂x1w − x2) and σ23 = θG(x)(∂x2w + x1) in �/J. (2.8)

HereG(x) is the piece-wise constant shear modulus taking the values:Gm andGr

in the matrix and fiber respectively. Substitution of (2.5 and 2.6) into the interface
conditions (2.2) and (2.3) gives

σn = 0 on J, (2.9)
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[G(x)(∇w + ṽ) · n] = 0 on J, (2.10)

and

Gr(∇w + ṽ)r · n = −α[w] on J. (2.11)

Here∇w = (∂x1w, ∂x2w)
t , ṽ = (−x2, x1)

t , andn = (n1, n2)
t is the unit normal

pointing out of the fiber. The traction free condition on the sides of the shaft gives

∂nw = −n · ṽ on ∂� (2.12)

and the equilibrium condition∂jσij = 0 gives

1w = 0 in �/J. (2.13)

Equations (2.10)–(2.13) determine the warping function up to an additive constant.
We introduce the harmonic functionφ conjugate to the warping functionw on

the region�/J . This function is defined uniquely up to an additive constant inside
each fiber and in the matrix. The stress potential8 is defined as

8 = G(x)(φ − (x2
1 + x2

2)/2). (2.14)

One easily calculates that for all points in�/J that

∇8 = −RG(x)(∇w + ṽ), (2.15)

whereR is the rotation matrix associated with a clockwise rotation ofπ/2 radians.
Relations (2.14) and (2.15) allow us to recover the boundary value problem for the
stress potential from that of the warping function. From (2.14) we obtain

G−1(x)18 = −2 in �/J. (2.16)

Application of (2.10) and (2.15) gives

0= [G(x)(∇w + ṽ) · n] = [R∇8 · n] on J (2.17)

and we find

[∂τ8] = 0 on J. (2.18)

Here ∂τ indicates tangential differentiation along the interface. It follows from
(2.18) that adjustment by a constant in each fiber (if necessary) gives[8] = 0
across the interface. Thus the gradient of8 is square integrable over the whole do-
main� and8 lies in the Sobolev spaceH 1(�). From (2.12) we find that∂τ8 = 0
on ∂� and so8 is a constant on∂�. We fix the last constant at our disposal to
set8 = 0 on ∂�. Lastly we recover the transmission conditions satisfied by the
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derivatives of the stress potential across the interface. We return to equation (2.15)
and apply standard trace theorems to find:

[G−1∂n8] = −[R(∇w + ṽ) · n] on J. (2.19)

Noting thatRt = −R andRn = τ whereτ is the unit tangent toJ , we have

[G−1∂n8] = [∂τw] on J. (2.20)

On the other hand from (2.11) we have

Gr(∇w + ṽ)r · n = −α[w] on J (2.21)

and sinceR∇8r · n = Gr(∇w + ṽ)r · n onJ , we obtain

−∂τ8 = −α(wr − wm) on J. (2.22)

(Here we recall from (2.18) that the tangential derivative of8 is continuous across
J ). WhenJ is sufficiently regular we may differentiate (2.22) and apply (2.20) to
find the desired transmission condition:

α−1∂2
τ 8 = [G−1∂n8]. (2.23)

Collecting our results we find that the transmission condition[8] = 0 onJ , (2.16)
and (2.23) together with the boundary condition8 = 0 on∂� provides a boundary
value problem for the stress potential. Existence and uniqueness follows from an
application of the Lax-Milgram Lemma; this is established in the work of Pham
Huy and Sanchez Palencia [6].

The torsional rigidity can be expressed in terms of the stress potential. Substi-
tution of the stress potential into equation (1.1) gives

Tα(Ar,�) =
∫
�

G−1(x)|∇8|2 dx + α−1
∫
J

|∂τ8|2 dl. (2.24)

To proceed with the analysis we formulate the torsional rigidity in terms of the
following variational principle. We write

Tα(Ar,�) = −2Eα(Ar,�), (2.25)

where

Eα(Ar,�) = min
ϕ∈H1

0 (�)

{
1

2

(∫
�

G−1(x)|∇ϕ|2 dx + α−1
∫
J

|∂τϕ|2 dl

)

− 2
∫
�

ϕ dx

}
. (2.26)
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HereH 1
0 (�) denotes all functions inH 1(�) that are zero on the boundary of�. It

is easily checked that the minimizer is precisely the stress potential.

3. Proof of the Isoperimetric Inequality

We now prove the isoperimetric inequality. To do this we start by comparing the
torsional rigidity Tα(Ar,�) for finite values of the tangential compliance to the
torsional rigidity for perfectly bonded fibers. The torsional rigidity for a perfectly
bonded fiber reinforced shaft is writtenT∞(Ar,�) and is given by the well known
variational formulation

T∞(Ar,�) = −2E∞(Ar,�), (3.1)

where

E∞(Ar,�)

= min
ψ∈H1

0 (�)

1

2

(∫
�

G−1|∇ψ |2 dx

)
− 2

∫
�

ψ dx. (3.2)

The minimizer is the stress potential in the shaft. It is evident from the definition of
the energiesEα(Ar,�) andE∞(Ar,�) that for any reinforcement fiber and shaft
cross section

T∞(Ar,�) > Tα(Ar ,�), (3.3)

for 0 < α < ∞. This expresses the intuitive notion that shafts with perfectly
bonded fibers are more rigid than ones with imperfectly bonded fibers.

Next we consider the special case of a cylinder of circular cross-section of
radiusR, containing a centered circular region of radiusa, filled with compliant
material, surrounded by an annular jacket of stiff material. The region occupied by
the more compliant material is a disk of radiusa and is denoted byDa, the cylinder
cross section� is denoted byDR and the regionAr occupied by the reinforcement
phase isDR/Da. For this configuration the stress potential is independent of the
interfacial shear stiffness and calculation shows that it is given by

ψ = f (x), a < x < R,

f (x)+ v(x), 0< x < a, (3.4)

where

f (x) = −Gr

2
|x|2 + Gr

2
R2 (3.5)
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and

v(x) = −(Gm −Gr)

2
|x|2+ (Gm −Gr)

2
a2, (3.6)

where|x|2 = x2
1 + x2

2. The associated warping function for this configuration is:

w(x1, x2) = constant. (3.7)

It is evident that the traction vanishes at the fiber-matrix interface and that the
displacement is continuous everywhere in the shaft. Furthermore we see that the
stress potential and displacements are independent of the interfacial tangential
stiffnessα. A straight forward calculation shows that the torsional rigidity for
this configuration is given by (1.2). When this configuration is perfectly bonded
calculation shows that

T∞(DR/Da,DR) = πGr

2
(R4− a4)+ πGm

2
a4. (3.8)

Collecting our results we see for this configuration that

T∞(DR/Da,DR) = Tα(DR/Da,DR)

= πGr

2
(R4− a4)+ πGm

2
a4. (3.9)

To finish the proof we show that

T∞(Ar,�) 6
πGr

2
(R4− a4)+ πGm

2
a4, (3.10)

from which the isoperimetric inequality follows immediately from inequality (3.3)
and the identity (3.9). To establish (3.10) we appeal to Theorem 1 of Alvino and
Trombetti [2] (or Theorem 1.1 of Voas and Yaniro [10]). In order to state Theorem 1
of Alvino and Trombetti [2] we denote any symmetric bounded measurable matrix
function defined on� by aij (x1, x2) and suppose that for every vectorη = (η1, η2)

that

aij (x1, x2)ηiηj > ν(x1, x2)|η|2, (3.11)

where 0 < ν and
∫
�
ν−p dx 6 ∞ for somep > 1. We let�∗ be the disk

with the same area as�. The torsional rigidity for a cylindrical cross section�
with local compliance specified byaij (x1, x2) is denoted byP . We letν] denote
the decreasing spherically symmetric rearrangement ofν. The associated torsional
rigidity for �∗ with local compliance given byν] is denoted byP ∗. Theorem 1 of
Alvino and Trombetti [2] asserts that

P 6 P ∗ (3.12)
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Inequality (3.10) follows immediately from (3.12) upon setting

aij (x1, x2) = ν(x1, x2)Iij = ((2Gr)
−1χr + (2Gm)

−1χm)Iij ,

whereχr andχm are the characteristic functions ofAr andAm respectively.
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