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Abstract

Suitable macroscopic quantities beyond e1ective elastic properties are used to assess the dis-
tribution of stress within a composite. The composite is composed of N anisotropic linearly
elastic materials and the length scale of the microstructure relative to the loading is denoted by
�. The stress distribution function inside the composite ��(t) gives the volume of the set where
the norm of the stress exceeds the value t. The analysis focuses on the case when 0¡��1. A
rigorous upper bound on lim�→0��(t) is found. The bound is given in terms of a macroscopic
quantity called the macro stress modulation function. It is used to provide a rigorous assessment
of the volume of over stressed regions near stress concentrators generated by reentrant corners
or by an abrupt change of boundary loading.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In many cases, the initiation of failure in a composite specimen can be related to the
elastic stress 9eld present at the time of initiation, see Kelly and Macmillan (1986).
Motivated by this, we examine the distribution of extreme values for the stress in the
linear elastic regime. The focus here is to assess the size and location of the region
over which the magnitude of the stress (or equivalent stress) exceeds a nominal value t.
This approach is consistent with failure initiation criteria given by a critical equivalent
stress tc above which the composite is assumed to fail, see Jeulin (1994).

Composites made from N anisotropic linearly elastic materials are considered. The
domain containing the composite is denoted by � and the stress tensor in the composite
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at the point x is denoted by ��(x). Here � gives the scale of the microstructure relative
to the characteristic length scale of the loading and the dimensions of the composite
specimen. Coordinate invariant measures of the stress are used in the formulation of
failure criteria. In this treatment, we consider the equivalent stress given by

��
eq =

√
�(��); �(��) =��� : ��; (1.1)

where � is a positive-de9nite fourth-rank tensor, see Tsai and Hahn (1980). Examples
of (1.1) include the Von Mises equivalent stress given by

((1=2)[(��
11 − ��

22)2 + (��
22 − ��

33)2 + (��
11 − ��

33)2]

+3((��
12)2 + (��

13)2 + (��
23)2))1=2; (1.2)

and the magnitude of the stress given by |��| =
√∑3

ij=1(��
ij)2. The subset of the

specimen where ��
eq exceeds the value t ¿ 0 is denoted by S�

t . The stress distribution
function ��(t) gives the volume of the overstressed zone S�

t . One also de9nes the stress
distribution inside each elastic phase. The volume of the set in the ith phase where ��

eq
exceeds the value t ¿ 0 is denoted by ��i (t).

In this work rigorous bounds on ��(t) and ��i (t) are obtained in the limit of vanish-
ing �, see Propositions 1.1 and 1.2 of this section. These are used to provide rigorous
asymptotic upper bounds on the volume of the over stressed regions near stress con-
centrators generated by reentrant corners or by an abrupt change of boundary loading.
They provide estimates for the volume of the overstressed zones for suHciently small
�. This is illustrated in Section 2 where three examples are given for 9ber-reinforced
shafts subject to anti-plane shear and torsion loading. Motivated by these examples
general conditions are identi9ed in Section 3 for which lim�k→0 �

�k
i (t) exhibits polyno-

mial or exponential decay with t. Lastly, we point out the recent work of Luciano and
Willis (2003) where the boundary layer behavior of the stress and strain 9elds with
respect to � is investigated for random composite materials.

The bounds on lim�→0 ��(t; ) and lim�→0 ��i (t) are given in terms of the macro stress
modulation functions. To introduce the macro stress modulation functions we consider
a composite contained in the unit cube Q. The local elastic tensor for N anisotropic
elastic materials is denoted by C(y). Each phase has an elastic tensor speci9ed by Ai

and C(y)=Ai in the ith phase. The characteristic function of the ith phase is written as
�i(y) and takes the value 1 in the ith phase and 0 otherwise. No constraint is placed on
the arrangement of the phases inside Q. We construct an in9nite periodic medium by
repeated replication of the unit cube. For this case the strain j(y) in the composite can
be decomposed into a prescribed average strain J� and a Q periodic Kuctuation �(w(y))
where the periodic displacement w is the solution of

− div (C(y)(j(w(y)) + Jj)) = 0: (1.3)

The stress in the composite is �(y) =C(y)(j(w(y)) + Jj). The average stress is related
to the average strain Jj by J�=CE Jj, where CE is the e1ective elastic tensor, see Milton
(2002).
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One is interested in the maximum equivalent stress in the ith phase generated by
subjecting Q to the average or macroscopic stress J�. With this in mind we introduce
the macro stress modulation function. Set

fi(SE J�) = ‖�i(y)�eq(y)‖L∞(Q); (1.4)

where SE is the e1ective compliance (CE)−1. Here ‖ · ‖L∞(Q) denotes the L∞ norm
over the unit period cell Q. The macro stress modulation function fi(SE J�) measures
the ampli9cation or diminution of J� by the microstructure.

It is easily seen that stress state is self similar under a rescaling of the con9guration.
Indeed, set �k = 1=k and rescale the material properties by C�k (y) =C(y=�k). It is easily
checked that the stress also rescales as ��k (y)=�(y=�k). Thus, the stress analysis for the
�k scale microstructure reduces to the stress analysis for the un-rescaled con9guration on
the unit cube Q. However, in general the loading is not uniform and the specimen shape
is incommensurate with a rescaled periodic replication of a con9guration speci9ed on
the unit cube. Because of this, the stress state in the composite is not obtained directly
through an analysis of the stress in the unit cube. In this paper a suitable multiscale
analysis using macro stress modulation functions is shown to provide rigorous bounds
on the volume of the overstressed zones ��(t) and ��i (t) in the limit of vanishing �.

The general boundary value problem for the specimen is given. The �k =1=k periodic
composite inside the specimen is described by C�k (x) = C(x=�k). The specimen � is
subjected to a body load f . A traction g is applied to part of the boundary of the
specimen and a displacement u�k = U0 is prescribed on the remaining part of the
boundary. Here the body loads, boundary tractions and boundary displacements can be
nonuniform. The stress and displacement in the specimen are denoted by ��k and u�k ,
respectively. The equation of elastic equilibrium is given by

− div��k = f : (1.5)

The elastic strain j(u�k ) is related to the stress by ��k = C�kj(u�k ).
The multiscale analysis proceeds in two steps. The 9rst step is the homogenization

step where the macroscopic stress is determined. From the theory of periodic homog-
enization (Bensoussan et al., 1978) ��k and j(u�k ) converge to the macroscopic stress
�M and strain j(uM) as �k goes to zero. The macroscopic stress satis9es �Mn = g on
the part of the boundary experiencing traction and the macroscopic displacement uM

satis9es uM = U0 on the remaining part of the boundary. The macroscopic stress sat-
is9es the equilibrium equation −div�M = f . The stress and strain are related through
the homogenized constitutive law

�M(x) = CEj(uM(x)): (1.6)

The second step is a down-scaling step and gives the interaction between the macro-
scopic stress �M(x) and the microstructure. For each x one has the macroscopic strain
jM(x) = j(uM(x)) = SE�M(x) and one computes the microscopic response given by
�(x; y) = C(y)(j(w(x; y)) + jM(x)). For each x the Q periodic displacement w(x; y)
solves

− divy(C(y)(jy(w(x; y)) + jM(x))) = 0; y in Q: (1.7)
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Here all derivatives with respect to the microscopic variable y are denoted with sub-
scripts and x appears as a parameter. The relevant interaction is described by the
macrostress modulation function fi(SE�M(x)) given by

fi(SE�M(x)) = ‖�i(y)�eq(x; y)‖L∞(Q): (1.8)

The set of points where fi(SE�M(x))¿ t is denoted by {fi(SE�M(x))¿ t}. The vol-
ume of this set is denoted by |{fi(SE�M(x))¿ t}|.

The bound on the volume of the overstressed zone in the ith phase is given by

Proposition 1.1.

lim
�k→0

��ki (t)6 |{fi(SE�M(x))¿ t}|: (1.9)

We introduce the maximum

M (SE�M(x)) = max
i=1;:::;N

fi(SE�M(x)) (1.10)

and the set of points where M (SE�M(x))¿ t is denoted by {M (SE�M(x))¿ t}. The
volume of this set is denoted by |{M (SE�M(x))¿ t}|. The bound on the volume of
the overstressed zone in the specimen is given by

Proposition 1.2.

lim
�k→0

��k (t)6 |{M (SE�M(x))¿ t}|: (1.11)

Next consider a subdomain S of the composite specimen. The volume of the set
of points in the ith elastic phase contained in S for which ��

eq(x)¿t is denoted
by ��ki (t; S). The following propositions provide information on the location of over-
stressed zones.

Proposition 1.3. If fi(SE�M(x))¡t for every point in S then

lim
�k→0

��ki (t; S) = 0: (1.12)

Similarly, the volume of the set of points in S for which ��
eq(x)¿t is denoted by

��k (t; S). One has the following proposition given by

Proposition 1.4. If M (SE�M(x))¡t for every point in S then

lim
�k→0

��k (t; S) = 0: (1.13)

Propositions (1.3) and (1.4) were derived in Lipton (2003).
Propositions 1.1–1.4 are employed to estimate the size and location of overstressed

zones in composites. This is illustrated in Section 2 where examples are given. General
conditions are identi9ed in Section 3 for which lim�k→0�

�k
i (t; S) exhibit polynomial or

exponential decay with t. It is shown in Section 4 that Propositions 1.1 and 1.2 are
direct consequences of homogenization constraints relating the macrostress modulation
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functions to the distribution of states for the equivalent stress. These constraints are
introduced and proved in Lipton (2003). In that work the constraints are derived for
the more general case of graded locally periodic microstructures and in the context of
G convergence. Because of this the arguments given here deliver results identical to
Propositions 1.1 and 1.2 for more general classes of composites described by continu-
ously graded locally periodic microstructures and for G convergent sequences of elastic
tensors, see Lipton (2003). Propositions 3.1–3.3 are derived in Section 5.

2. Upper bounds on overstressed regions

In this section we consider prismatic shafts reinforced with long cylindrical 9bers
with circular cross section. In the 9rst example the shaft cross section has a reen-
trant corner, see Fig. 1. The angular width of the reentrant corner is 2� − ! where
�¡!¡ 2�. The 9ber microgeometry is periodic and the length scale of the period is
�k = 1=k, see Fig. 2. In order to illustrate the stress assessment methodology we 9rst

2
2π−ϖ

O

A

B

Fig. 1. Cross section of a long prismatic shaft with reentrant corner.

ε

2
2π−ϖ

Fig. 2. The same shaft reinforced with long cylindrical 9bers with circular cross section. The microstructure
is periodic.
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Fig. 3. The unit period cell for the microstructure. Here the unit cell is 9lled with the
Hashin–Shtrikman-coated cylinder assemblage.

consider a period cell 9lled with microstructure for which the microstress and strain
9elds can be solved for analytically. Here we consider the coated cylinder assemblage
of Hashin and Shtrikman (1962). A unit period cell 9lled with the coated cylinder
assemblage is illustrated in Fig. 3. The coated cylinder assemblage is constructed by
placing a space 9lling con9guration of disks of di1erent sizes ranging down to the
in9nitesimal inside the period cell. Each disk is partitioned in to a coating and a core.
The area fractions of coating and core are the same for all disks. The matrix phase
is given by the union of all the coatings and the 9ber cross sections are given by the
cores. The shear moduli of the 9bers and matrix are denoted by Gf and Gm respectively.
The area fraction of the 9ber phase in the cross section is denoted by �. The shaft
is subject to anti-plane shear loading at the boundary. The out-of-plane deformation
is denoted by u�k and the associated out-of-plane stress components are given by the
vector ��k =(��k

1 ; �
�k
2 ). The rapidly oscillating piecewise constant shear stress is denoted

by G�k and ��k = 2G�k∇u�k . The unit normal to the shaft cross section is denoted by n.
On OA and OB the shaft is traction free, i.e., ��k · n = 0. On the circular arc of radius
one connecting B to A the traction is given by ��k ·n= (�=!)cos��=!, for 0¡�¡!.
Inside the shaft one has the equilibrium equations

2GmMu�k = 0; in the matrix and

2Gf Mu�k = 0; in the 9bers: (2.1)

The displacement is continuous across material interfaces and

2Gm@nu�km = 2Gf@nu
�k
f ; (2.2)

where @n denoted the directional derivative along the unit normal pointing out of
the 9ber phase and the subscripts denote the side of the interface where the normal
derivatives are evaluated.
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In this example, we use Propositions 1.1–1.4 to provide rigorous upper bounds on
the size of overstressed regions as well as a methodology for the assessment of their
location in the reinforced cross section. The set in the 9ber phase where |�jk |¿t
is denoted by S�k

f ; t and the set in the matrix phase where |�jk |¿t is denoted by
S�k

m; t . The areas occupied by the sets S�k
f ; t and S�k

m; t are denoted by ��kf (t) and ��km(t),
respectively. The set where |�jk |¿t in the composite is denoted by S�k

t and the area
of this set is denoted by �(t)�k . In the sequel, we will also use the following standard
convention: for a given function g we will denote the set of points for which the
inequality g(x)¿ t holds by writing {g(x)¿ t}. The volume of the set {g(x)¿ t} is
denoted by |{g(x)¿ t}|.

In order to compute the macrostress modulation functions we perform the multiscale
analysis outlined in the introduction. The 9rst step is the homogenization step. Passing
to the limit as �k tends to zero the homogenization theory shows that the macroscopic
out-of-plane displacement uM and stress �M satisfy �M = 2GE∇uM, where GE is the
e1ective shear sti1ness for the coated cylinder assemblage given by

2GE = !
(
!(1 − �) + "(1 + �)
!(1 + �) + "(1 − �)

)
: (2.3)

Here ! = 2Gm and " = 2Gf . One has ∇ · �M = 0 inside the shaft cross section. On the
faces OA and OB traction free boundary conditions �M ·n=0 are given. On the circular
arc of radius one connecting B to A the traction is given by �M · n = (�=!)cos��=!,
for 0¡�¡!. The solution of the macroscopic problem gives

�M = er
�
!

r�=!−1cos��=!− e�
�
!

r�=!−1sin ��=!: (2.4)

Here (r; �) are polar coordinates centered at O and er , e� are the corresponding unit
vectors.

The second step is the up scaling step. Here one solves (1.7) in the unit cell con-
taining the Hashin–Shtrikman-coated cylinder assemblage. In the context of anti-plane
shear (1.7) reduces to

− divy(2G(y)(∇y(w(x; y)) + ∇uM(x))) = 0; y in Q; (2.5)

where G(y) is the piecewise constant shear modulus in the coated cylinder assemblage
taking the values Gm in the matrix and Gf in the 9bers. For x 9xed ∇uM(x) is a
constant vector and the 9elds w(x; y) and �(x; y) = 2G(y)(∇y(w(x; y)) + ∇uM(x))
can be solved analytically, see Hashin and Shtrikman (1962). Here, the macrostress
modulation in the matrix and 9ber phases are given by

fm(x) = ‖|�(x; y)‖|L∞(Qm) (2.6)

and

ff (x) = ‖|�(x; y)‖|L∞(Qf ); (2.7)

respectively, where Qm is the part of the unit cell occupied by matrix and Qf is the
part occupied by 9bers. Changing to polar coordinates and solution of (2.5) gives

fm(r; �) = Km �
!

r�=!−1 (2.8)
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and

ff (r; �) = K f �
!

r�=!−1; (2.9)

where

Km =
1 + |! − "|=(! + ")

1 − �(! − ")=(! + ")
(2.10)

and

K f =
2"

! + "− �(! − ")
: (2.11)

Formulas (2.10) and (2.11) imply that 16K f 6Km. When the 9ber is sti1er than the
matrix K f = Km and when the 9ber is more compliant then K f ¡Km. Thus it is clear
that

M (r; �) = max{fm(r; �); ff (r; �)} = fm(r; �): (2.12)

The area of the cross section with reentrant corner is denoted by A and for the case
considered here A = !=2. The calculation gives

|{fm(r; �)¿ t}| = A
(
Km �

!

)2!=(!−�)
× t−2!=(!−�) for t ¿Km �

!
(2.13)

and

|{ff (r; �)¿ t}| = A
(
K f �

!

)2!=(!−�)
× t−2!=(!−�) for t ¿K f �

!
(2.14)

and |{fm(r; �)¿ t}| = A for t6Km �
! and |{ff (r; �)¿ t}| = A for t6K f �

! . Propo-
sition 1.1 immediately gives the bounds

lim
�k→0

��km(t)6




A
(
Km �

!

)2!=(!−�)
× t−2!=(!−�) for t ¿Km �

!
;

A for t6Km �
!

(2.15)

and

lim
�k→0

��kf (t)6




A
(
K f �

!

)2!=(!−�)
× t−2!=(!−�) for t ¿K f �

!
;

A for t6K f �
!
:

(2.16)

For comparison it is noted that the stress distribution �m(t) inside the cross section
9lled with pure matrix material and no 9bers is given by

�m(t) =




A
( �
!

)2!=(!−�)
× t−2!=(!−�) for t ¿

�
!
;

A for t6
�
!
:

(2.17)
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It is noted that Km = 1 when Gf = Gm and one sees that the upper bound (2.15)
coincides with the exact result (2.17) in the absence of reinforcement. In Section 3,
we identify generic situations for which the volume of the overstressed zones have
polynomial decay of the kind given by (2.15) and (2.16).

Next we apply Propositions 1.3 and 1.4 to identify the location and extent of the
overstressed zone due to the stress concentration at the reentrant corner. For a prescribed
value of t the radii dm = dm(t) and df = df (t) are de9ned by

fm(dm ; �) = Km �
!

d�=!−1
m = t (2.18)

and

ff (df ; �) = K f �
!

d�=!−1
f = t: (2.19)

From Proposition 1.3 it follows that for any set S containing only points with radial
coordinate r ¿df that

lim
�k→0

��kf (t; S) = 0; (2.20)

and for any set S containing only points with radial coordinate r ¿dm that

lim
�k→0

��km(t; S) = 0: (2.21)

From Proposition 1.4 and (2.12) it follows that for sets S containing only points with
radial coordinate r ¿dm that

lim
�k→0

��k (t; S) = 0: (2.22)

For small values of �k , it is clear from (2.20), (2.21), and (2.22) that the radii dm(t)
and df (t) provide estimates for the extension of the overstressed regions S�k

m; t ; S
�k
t , and

S�k
f ; t inside the composite. It is evident from their de9nition that dm and df depend

explicitly on the volume fraction of 9bers in the microstructure. To illustrate the ideas
it is supposed that the 9ber shear modulus is 1 the matrix shear modulus is 20 and
the area fraction of 9bers is taken to be 0.6. For these values Km = 7:14. In Fig. 4,
the radius dm(7) = 0:296 is plotted for a domain with ! = 3�=2. It is evident from
(2.20), (2.21), and (2.22) that progressively larger portions of the overstressed regions
S�k

m;7, S�k
7 , and S�k

f ;7 lie within the radius 0.296 as �k tends to zero. Indeed, there is a
length scale �k for which more than 99.9% of the areas of the sets S�k

m;7, S�k
7 , and S�k

f ;7
lie inside the radius 0.296.

Next we consider a shaft cross section given by a half disk of radius 0.3. The
Kat part of the half disk lies on the x1-axis and the origin for the x1; x2 coordinate
system lies midway between the ends. The disk contains periodic microgeometry with
period cells 9lled with the Hashin–Shtrikman-coated sphere assemblage and is subjected
to an anti-plane shear load. On −0:3¡x1 ¡ 0 we prescribe the traction boundary
condition ��k · n = �, on 0¡x1 ¡ 0:3 we prescribe ��k · n = 0 and on the circular
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Fig. 4. Rigorous estimation of the overstressed zone for the reentrant corner in a 9ber-reinforced composite
shaft subject to anti-plane shear.

arc r = 0:3; 0¡�¡� the traction is given by ��k · n = (ln 0:3 + 1)cos� − � sin �.
Proceeding as before we 9nd that

fm(r; �) = Km
√

(ln r + 1)2 + �2 (2.23)

and

ff (r; �) = K f
√

(ln r + 1)2 + �2: (2.24)

Application of Propositions 1.1 and 1.2 shows that

lim
�k→0

��km(t)6
∣∣∣{Km

√
(ln r + 1)2 + �2¿ t

}∣∣∣ ; (2.25)

lim
�k→0

��kf (t)6
∣∣∣{K f

√
(ln r + 1)2 + �2¿ t

}∣∣∣ (2.26)

and

lim
�k→0

��k (t)6
∣∣∣{Km

√
(ln r + 1)2 + �2¿ t

}∣∣∣ : (2.27)

The 9ber area fraction and 9ber and matrix shear moduli are chosen as before to be
Gm = 20, Gf = 1, and � = 0:6. For this choice Km = 7:14. We choose t = 22:25 and
the set speci9ed by{

(r; �); 7:14
√

(ln r + 1)2 + �2¿ 22:5
}

(2.28)

is given by the shaded region inside the half disk shown in Fig. 5. From Proposition
1.4 it follows that for any set S that does not intersect the shaded region that

lim
�k→0

��k (22:5; S) = 0: (2.29)
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Fig. 5. The shaded region gives a rigorous estimation for the overstressed zone due to a change in traction
on the boundary of a 9ber-reinforced composite shaft subject to anti-plane shear.

Thus for microstructure characterized by suHciently small �k , the shaded region gives
an estimate for the overstressed region S�k

m;22:5. The shaded region provides a rigorous
upper bound on the over stressed region in the sense of (2.29) in the �k = 0 limit.
It is noted that for suHciently large values of t and suHciently small values of r the

volume
∣∣∣{Km

√
(ln r + 1)2 + �2¿ t

}∣∣∣ is well approximated by (�=2)e2exp(−t=Km). In
Section 3, we identify generic situations under which the volume of the overstressed
zones have exponential decay.

Last consider an L-shaped cross section subject to torsional loading. The cross sec-
tion is 9lled with a �k periodic repetition of the Hashin–Shtrikman-coated cylinder
assemblage. The stress potential ’�k vanishes on the boundary of the cross section and
satis9es

−M’�k = 2Gm in the matrix

and

− M’�k = 2Gf in the 9bers: (2.30)

The stress potential is continuous across material interfaces and

(2Gm)−1@n’�k
m = (2Gf )−1@n’

�k
f : (2.31)

Proceeding with the multi-scale analysis we 9rst write the associated homogenized
boundary value problem for the macroscopic stress potential ’M obtained in the �k = 0
limit. Here ’M = 0 on the boundary of the L-shaped domain and

− hEM’M = 1; (2.32)

where

hE = !
(
!(1 − �) + "(1 + �)
!(1 + �) + "(1 − �)

)
: (2.33)
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Fig. 6. Contour plot of macroscopic stress potential.

Here ! = (2Gm)−1, " = (2Gf )−1 and � is the area fraction of the 9ber phase. The
macroscopic stress potential is solved numerically and is plotted in Fig. 6. Next we
up scale and solve for the macrostress modulation functions. For this example, the
up-scaling step requires us to solve for the Kuctuating stress potential w(y; x). Here w
is Q periodic in the y variable and is the solution of

− divy((2G(y))−1(∇y(w(x; y)) + ∇’M(x))) = 0; y in Q; (2.34)

where G(y) is the piecewise constant shear modulus in the coated cylinder assemblage
taking the values Gm in the matrix and Gf in the 9bers. For x 9xed ∇’M(x) is a
constant vector and the 9eld w(x; y) can be solved analytically. For this problem the
macrostress modulation functions are written in the form

fm(x) = ‖|∇yw(x; y) + ∇’M(x)‖|L∞(Qm) (2.35)

and

ff (x) = ‖|∇yw(x; y) + ∇’M(x)‖|L∞(Qf ): (2.36)

see Lipton (2003). Solution of (2.34) gives

fm(x) = K̃m|∇’M(x)| (2.37)

and

ff (x) = K̃ f |∇’M(x)|: (2.38)

Here,

K̃m =
1 + |! − "|=(! + ")

1 + �(! − ")=(! + ")
(2.39)

and

K̃ f =
2!

! + " + �(! − ")
: (2.40)
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Fig. 7. Rigorous estimation of the overstressed zone for a 9ber-reinforced composite shaft with L-shaped
cross section subject to torsion loading.

To illustrate the ideas, we choose Gm=10, Gf =1 and �=0:2. For these choices hE=0:7,
K̃m = 2:174 and K̃ f = 0:2174. The level curves for fm(x) are plotted in Fig. 7. The
level curve {fm(x) = 14} is highlighted in Fig. 7. The set of points surrounded by
the curve and the reentrant corner is precisely the set {fm(x)¿ 14}. The set of points
outside this zone is precisely the set {fm(x)¡ 14}. It is evident from Proposition 1.3
that lim�k→0 ��km(14; S) = 0 for any set S contained within {fm(x)¡ 14}. In this way
we see that the set {fm(x)¿ 14} provides a good estimate for the overstressed zone
{|∇’�k |¿ 14} when �k is suHciently small.

3. Bounds with exponential and polynomial decay: su$cient conditions

Motivated by the examples given in the previous section we identify generic con-
ditions under which the bounds on lim�k→0 �

�k
i (t) exhibit polynomial or exponential

decay. The results presented here easily follow from Propositions 1.1 and 1.2 given
in the introduction. The utility of these results lies in the fact that they apply to com-
posites made from of N anisotropic elastic materials and they apply to samples with
reentrant corners.

In the 9rst example of Section 2 bounds on lim�k→0 �
�k
i (t) were found that exhibited

polynomial decay in t. Motivated by this example we give general conditions for which
lim�k→0 �

�k
i (t)6Kt−p. Such a bound follows immediately from Proposition 1.1 when

it is known that for some p with 16p¡∞ that

‖fi(SE�M(x))‖pLp =
∫
�

(fi(SE�M(x)))p dx¡∞: (3.1)

For this case one has the bound given by

Proposition 3.1.

lim
�k→0

��ki (t)6 ‖fi(SE�M(x))‖pLp × t−p: (3.2)
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In the second example of Section 2 bounds on lim�k→0 ��k (t) are found that decay
exponentially. The macrostress modulation function for this example behaved asymp-
totically like Km|ln r| in the limit as r → 0. Although |ln r| is unbounded it does have
bounded mean oscillation (BMO). Motivated by this example, we consider an open
cube C0 immersed inside the composite and give general conditions for which the up-
per bound on lim�k→0 ��k (t; C0) decays exponentially in t. We recall the macro stress
modulation M (SE�M(x)) given by

M (SE�M(x)) = max
i=1;:::;N

fi(SE�M(x)): (3.3)

The BMO norm of M (SE�M(x)) over the cube C0 is given by

‖M‖BMO = sup
C⊂C0

(
1
|C|

∫
C
|M (SE�M(x)) −MC | dx

)
; (3.4)

where MC is the average of M (SE�M(x)) over C and the supremum is taken over
all sub-cubes C of C0. The BMO norm and the space of functions of bounded mean
oscillation were introduced by John and Nirenberg (1961).

For any positive number " between zero and one we de9ne the constant C(") by

C(") =
"|ln "|

8‖M‖BMO
: (3.5)

Next we denote the average of M (SE�M(x)) over the cube C0 by MC0 and the bound
on lim�k→0 ��k (t; C0) is given in the following proposition.

Proposition 3.2. If t ¿ 8‖M‖BMO"−1 + MC0 then

lim
�k→0

��k (t; C0)6 "−1e−C(")×(t−MC0 ): (3.6)

For t 9xed the Proposition shows that ��k (t; C0) approaches or drops below

"−1e−C(")×(t−MC0 )

for �k suHciently small. It also shows that the upper bound is exponentially decreasing
for large t. Optimization over ", see Section 5, provides the tighter upper bound given
by the following Proposition.

Proposition 3.3. If t ¿ 8‖M‖BMO + MC0 then

lim
�k→0

��k (t; C0)6 ("(t))−1e × e[−"(t)(t−MC0 )=(8‖M‖BMO)]; (3.7)

where the factor "(t) lies in the interval e−1 ¡"(t)¡ 1 and is the root of the equation

-−1 − "(1 + ln ") = 0; (3.8)

with - = (t −MC0 )=(8‖M‖BMO).
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4. Derivation of basic inequalities

In this section we derive Propositions 1.1 and 1.2. These are shown to follow in a
straight forward manner from the homogenization constraint given in Lipton (2003).

In order to introduce the constraint we de9ne the distribution of states for the equiva-
lent stress in a composite. Recall that the set in the ith phase where the equivalent stress
exceeds t is denoted by S�k

t; i . Consider any subset S of the specimen. The distribution
function ��ki (t; S) is de9ned by ��ki (t; S)= |S�k

t; i∩S|. The indicator function for the set S�k
t; i

is written ��kt; i taking the value 1 in S�k
t; i and 0 outside and we write ��ki (t; S) =

∫
S �

�k
t; i dx.

From the theory of weak convergence (see Evans, 1990) there exists a density �t; i(x)
taking values in the interval [0,1] such that (on passage to a subsequence if necessary)
for every choice of S one has limk→∞ ��ki (t; S) =

∫
S �t; i(x) dx. The density �t; i(x) is

the local distribution of states of the equivalent stress ��k
eq in the limit of vanishing �k .

One also considers the indicator function ��kt for the set S�k
t where the equivalent stress

is greater than t. Its clear that this set is the union of the sets S�k
t; i . As before there is

a density �t(x) such that limk→∞ ��k (t; S) =
∫
S �t(x) dx, for every choice of set S. It

follows easily that
∑

i �t; i = �t , where 06 �t6 1.
An application of Theorem 4.2 of Lipton (2003) delivers the homogenization con-

straints

�t; i(x)(fi(SE�M(x)) − t)¿ 0; i = 1; : : : ; N: (4.1)

We now prove a slight generalization of Proposition 1.1. It is evident from Eq.
(4.1) that at (almost) every point for which �t; i(x)¿ 0 one has that fi(SE�M(x))¿ t.
Now consider a subset S of the composite domain. The set of points in S for which
�t; i(x)¿ 0 is denoted by {x in S; �t; i(x)¿ 0} and it is clear that

|{x in S; �t; i(x)¿ 0}|6 |{x in S;fi(SE�M(x))¿ t}|: (4.2)

Since 06 �t; i(x)6 1 one has the estimate

lim
k→∞

��ki (t; S) =
∫
S
�t; i(x) dx6 |{x in S; �t; i(x)¿ 0}| (4.3)

and from (4.2) we deduce that

lim
k→∞

��ki (t; S)6 |{x in S;fi(SE�M(x))¿ t}|: (4.4)

Proposition 1.1 follows on making the choice S = � in (4.4).
Adding the homogenization constraints (4.1) and noting that M (SE�M(x))¿

fi(SE�M(x)) and
∑

i �t; i(x) = �t(x)6 1 we have

�t(x)(M (SE�M(x)) − t)¿ 0; i = 1; : : : ; N: (4.5)

Arguing as before we 9nd that

lim
k→∞

��k (t; S)6 |{x in S;M (SE�M(x))¿ t}|: (4.6)

Proposition 1.2 follows on making the choice S = � in (4.6).
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5. Derivation of the su$cient conditions for polynomial and exponential decay

In this section, Propositions 3.1–3.3 are derived. To prove Proposition 3.1, we
apply a basic estimate for the right-hand side of Eq. (4.4) when it is known that
‖fi(SE�M(x))‖Lp 6∞. The estimate is given by

|{x in S;fi(SE�M(x))¿ t}|6 ‖fi(SE�M(x))‖pLp × t−p (5.1)

and Proposition 3.1 follows.
Now, we derive Propositions 3.2 and 3.3. We apply the John–Nirenberg Theorem

(1961) to estimate the right-hand side of (4.6) with S = C0. To do this, we show 9rst
that

|{x in C0;M (SE�M(x))¿ t}|6 |{x in C0; |M (SE�M(x)) −MC0 |
¿ t −MC0}|: (5.2)

To see this note that since M (SE�M(x)) is non-negative one has that M (SE�M(x))6
|M (SE�M(x)) −MC0 | + MC0 . Thus,

{x in C0;M (SE�M(x))¿ t} ⊂ {x in C0; |M (SE�M(x)) −MC0 |¿ t −MC0} (5.3)

and (5.2) follows. Application of the John–Nirenberg Theorem (1961) gives

|{x in C0; |M (SE�M(x)) −MC0 |¿ s}|
|C0|

6

{
1; for 0¡s6 8‖M‖BMO"−1;

"−1e[−(C(")×(s)]; for 8‖M‖BMO"−1 ¡s:
(5.4)

Proposition 3.2 follows immediately from the change of variables s = t − MC0 and
inequalities (4.6), (5.2), and (5.4). The function obtained by the change of variables
s = t −MC0 in Eq. (5.4) is denoted by JP"(t; C0) and

JP"(t; C0) =

{
1; for 0¡t −MC0 6 8‖M‖BMO"−1;

"−1e[−(C(")×(t−MC0 )]; for 8‖M‖BMO"−1 ¡t −MC0 :
(5.5)

It is evident from the estimates that lim�k→0 ��k (t; C0)6 JP"(t; C0), for MC0¡t. Tighter
upper bounds are given by optimizing over ", i.e.,

lim
�k→0

��k (t; C0)6 JU (t; C0) = inf
0¡"¡1

JP"(t; C0): (5.6)

Here JU (t; C0) is continuous and decreasing and is given by

JU (t; C0) =

{
1 for 0¡t −MC0 6 8‖M‖BMO;

("(t))−1e × e[−"(t)(t−MC0 )=(8‖M‖BMO)]; for 8‖M‖BMO + MC0 ¡t:
(5.7)
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The factor "(t) lies in the interval e−1 ¡"(t)¡ 1 and is the root of the equation

-−1 − "(1 + ln ") = 0; (5.8)

where -= (t−MC0 )=(8‖M‖BMO). Proposition 3.3 now follows immediately from (5.7).
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