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Abstract. We provide a reciprocal relation linking the effective conductivity of a composite
with highly conducting phase interfaces to that of a composite with the same phase geometry but
with an electrical contact resistance at phase interfaces. A field relationship linking the electric field
inside a composite with highly conducting phase interfaces to the current in a composite with contact
resistance between phases is found. New size effects exhibited by isotropic particulate suspensions
with highly conducting interface are obtained. The effective properties of periodic composites are
shown to be monotonically increasing as the size of the period cell tends to zero. The role of surface
energy for energy minimizing polydisperse suspensions of disks is examined; a necessary condition for
isotropic polydisperse suspensions with minimal effective conductivity is found. For monodisperse
suspensions of spheres, a critical radius is found for which the electric field is uniform throughout
the composite.
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1. Introduction. A highly conducting interface may be thought of as the lim-
iting case of electrical transport across bulk phases separated by a thin highly con-
ducting interphase layer. To a first approximation, the highly conducting interface is
characterized by a discontinuous current field across the interface. The jump in the
normal current produces an interfacial charge density. The associated electric poten-
tial is continuous across the interface and is coupled to the interfacial charge density
through a Poisson equation on the interface; see (2.2) and (2.3). For a rigorous treat-
ment we refer the reader to [13].

On the other hand, electrical contact resistance often appears due to the presence
of a thin highly resistive layer or “interphase” between two conducting phases. The
effects of the thin layer can also be modeled by an interface with suitable discontin-
uous transmission conditions. Here the electric potential jumps across the interface.
The associated current normal to the interface is continuous and is proportional to
the jump in electric potential. This is rigorously established in [14]. Both of these
transmission conditions are distinct from the standard “perfectly bonded interface
conditions,” where both electric potential and normal current are continuous across
the interface. We remark that contact resistance is not limited to electrostatic prob-
lems and can appear in the mathematically analogous context of heat conductivity.
Here contact resistance can arise due to surface roughness [6] or to acoustic mismatch
between phases at liquid helium temperatures; see [3].

The effective electrical conductivity for two-phase composites with highly con-
ducting interfaces is investigated in the context of a periodic two-dimensional, two-
phase medium. The distribution of phases within the period cell can be arbitrary.
The composite may be regarded as consisting of parallel cylinders of conductivity
σ1 and σ2. We suppose that the highly conducting interface is characterized by a
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constant scalar tangential conductivity α. We provide a reciprocal relation linking
the effective conductivity of a composite with highly conducting interfaces to that
of a composite with the same geometry but with electrical contact resistance at the
two-phase interface; see Theorem 3.1. This result is shown to hold in general, with
no symmetry assumptions on the composite geometry.

For the classical case of perfect contact between phases, we recover the well-known
phase interchange relation proposed and proven by Keller (in 1964) for composites
with rectangular symmetry; see [4]. More generally, we recover the interchange result
of Mendelson (in 1975) for composites with diagonal effective tensors; see [10].

For a fixed geometry, we identify the relationship linking the electric field in a
composite with highly conducting interfaces to the current field in a composite with
interfacial contact resistance. (See Theorem 3.5.) These fields are seen to be related
by a 90-degree rotation.

More generally, we consider any periodic arrangement of two conductors in three
dimensions with highly conducting interface. We exhibit a size effect for the effective
conductivity tensor under rescaling. (See section 4.) It is seen that the effective
property is monotone increasing as the scale of the period cell tends to zero. A
related phenomenon was found for composites with interfacial contact resistance in
Lipton [7]. This is in sharp contrast to the scale invariance enjoyed by composites
with perfect contact between phases.

Recently, in Lipton and Vernescu [8], new upper and lower bounds on the effective
conductivity for two-phase conductors with contact resistance were obtained. We
use the reciprocal relation proposed here together with these results to obtain new
bounds on the effective conductivity tensor for isotropic two-dimensional, two-phase,
particulate composites with highly conducting interface. The lower bounds are found
to depend upon component area fractions and geometric parameters of the interface.
The upper bound is given in terms of the tortuosity of the connected matrix phase
and the specific interfacial arclength. (See Theorem 5.1.) The upper bound is shown
to be optimal in the limit α =∞; see Remark 5.3.

The monotonicity of the bounds in the interfacial geometric parameters and spe-
cific arclength is used to predict new size effects for the effective tensor. We consider
suspensions of inclusions of conductivity σ1 embedded in a matrix of higher conduc-
tivity σ2. A distinguished parameter Pcr = α/(σ2 − σ1) is found. This parameter
measures the relative importance of the tangential conductivity to the contrast be-
tween phase conductivities. For monodisperse suspensions of disks this parameter
gives the critical radius for which the effective conductivity equals that of the matrix;
see Theorem 6.1. For radii below this value the effective conductivity surpasses that
of the matrix, see Theorem 6.1. Physically, all size effects are due to the increase in
the fraction ratio of specific interfacial arclength to particle area as the sizes of the
inclusions decrease. The parameter Pcr picks out the scale at which the effects of the
interface balance the mismatch between the conductivities of each phase.

The aforementioned results can be extended to isotropic polydisperse suspensions
of disks and for inclusions of any shape and distribution; see Theorems 6.2 and 6.3. It
is shown that the effective conductivity always lies above that of the matrix, provided
that the mean radius of the polydisperse suspension lies below Pcr. More generally
for isotropic suspensions of particles of any shape and distribution we find that the
effective conductivity lies below that of the matrix when the specific arclength-to-
particle-area fraction lies below 2Pcr−1. We apply these theorems to address the role
of surface energy when designing energy minimizing arrangements of inclusions; see
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Theorem 6.4. Here we fix the area fraction and find a necessary condition for the
isotropic polydisperse suspension with minimal effective conductivity.

We note that for isotropic monodisperse suspensions of disks the critical radius
is directly related to the notion of a critical value for the dimensionless tangential
conductivity studied in [15]. We show that this critical phenomenon persists even for
anisotropic suspensions of disks and (spheres) in arbitrary domains in two and (three)
dimensions; see Corollary 7.2 and Remark 7.3. In doing so we obtain a fundamental
result concerning the behavior of electric fields inside suspensions at critical radius;
see Theorem 7.1. We find that the electric field is uniform throughout the composite
for suspensions of disks (spheres) at critical radius in two and (three) dimensions.

Based upon the results of Theorem 7.1, we address the following design problem
in three dimensions. We consider an arbitrary region Ω filled with a monodisperse
suspension of spheres of conductivity σ1 in a matrix of conductivity σ2. Here σ2 > σ1,
and we prescribe the common radii of the spheres. We show how to choose a highly
conducing interface with the appropriate tangential conductivity α that renders the
spheres undetectable when the boundary of Ω is subjected to any uniform current;
see Corollary 7.4 and Remark 7.6. Indeed, we show that for the proper choice of
coating, the resulting electrical field is the same as the electric field that would occur
in the absence of the spheres. Moreover, the resulting current external to the spheres
is unaffected by their presence.

Last, we note that although we have used the terminology of electrical conduc-
tivity, our results apply equally to the contexts of thermal conductivity, magnetic
permeability, and diffusivity.

2. Effective conductivity for composites with highly conducting inter-
face. We consider a unit square Q filled with two isotropic conductors with con-
ductivities specified by σ1 and σ2. In what follows we make no assumption on the
distribution of the conductors within the interior of the domain. One can think of the
cube as representing a (possibly very complicated) period cell for a composite ma-
terial. Decomposing the electric potential into a periodic fluctuation ϕ̃ and a linear
part E · x the average electric field inside Q is

E =
∫
∂Q

(ϕ̃+ E · x) nds.(2.1)

Here ∂Q is the boundary of the cube and n is the outer normal to the boundary.
To fix ideas we assume that the two-phase boundary is sufficiently smooth (i.e., a
twice differentiable curve). The fluctuating part of the potential is continuous across
phase interfaces and satisfies

∆ϕ̃ = 0 inside each phase(2.2)

and

σ1 (∇ϕ̃+ E)1 · n− σ2 (∇ϕ̃+ E)2 · n = α∆ (ϕ̃+ E · x)(2.3)

on the phase boundary Γ. Subscripts 1 and 2 denote the side of the interface where
field quantities are evaluated. Here n is the unit normal pointing into phase 2, and
∆ is the Laplace–Beltrami operator on Γ defined by

∆ (ϕ̃+ E · x) = δiδi (ϕ̃+ E · x) ,(2.4)
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where δ is the tangential gradient of ϕ̃+ E · x on Γ, i.e.,

δi (ϕ̃+ E · x) = ∂xi (ϕ̃+ E · x)− (n · (∇ϕ̃+ E) )ni.(2.5)

We observe from (2.3) that the current suffers a discontinuity at the two-phase
interface. The jump in current provides a surface charge density which drives the
Poisson equation (2.3) on the two-phase interface. The highly conducting interface
may be thought of as the limiting case of electric transport across two phases separated
by a thin highly conducting interphase layer. We denote the conductivity of the
interphase layer by σi and its thickness by l. Here the tangential conductivity α is
the finite limit of the product lσi as σi tends to infinity and l tends to zero; see [13].

Denoting the local conductivity by σ(x), the (possibly anisotropic) effective con-
ductivity tensor σ+

e of the mixture as measured by an outside observer is defined
as

σ+
eE =

∫
∂Q

σ(x) (∇ϕ̃+ E) · nx dS.(2.6)

Integration by parts and application of (2.2), (2.3), and the natural boundary
condition for the current yield

σ+
eE ·E =

∫
Q

σ(x)|∇ϕ̃+ E|2dx+ α

∫
Γ
|δ (ϕ̃+ E · x) |2ds.(2.7)

Physically (2.7) is a relation between the total energy dissipation rate inside
the heterogeneous conductor and the energy dissipated in a homogeneous effective
conductor.

One easily verifies the Dirichlet-like variational principle for the effective conduc-
tivity:

σ+
eE ·E = min

ϕ∈V

∫
Q

σ(x)|∇ϕ+ E|2dx+ α

∫
Γ
|δ (ϕ+ E · x) |2ds,(2.8)

where the space of trial fields is given by

V =
{
ϕ ∈W 1,2(Q)|ϕ−Q periodic

}
.(2.9)

For completeness we provide the field equations and definition of effective con-
ductivity for composites with interfacial barrier resistance.

We consider the same composite with phases of conductivity c1 and c2 with inter-
facial contact resistance specified by β−1. Here β may be regarded as the interfacial
barrier conductance. As before the electric potential is decomposed into a periodic
fluctuation ϕ̃ and a linear part. The average field, measured by an outside observer,
is

ζ =
∫
∂Q

{
ψ̃ + ζ · x

}
nds.(2.10)

The fluctuating part of the potential satisfies

∆ψ̃ = 0 inside each phase(2.11)

and

c1

(
∇ψ̃ + ζ

)
1
· n = c2

(
∇ψ̃ + ζ

)
2
· n,(2.12)

c2

(
∇ψ̃ + ζ

)
2
· n = −β

(
ψ̃1 − ψ̃2

)
(2.13)
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on the two-phase interface. Condition (2.13) accounts for the interfacial contact re-
sistance. Here the jump in potential is proportional to the current passing across the
interface. The local conductivity is denoted by c(x), and the effective conductivity of
the mixture σ−e is given by

σ−
eζ =

∫
∂Q

c(x)
(
∇ψ̃ + ζ

)
· nxds.(2.14)

For our work we will use a Thompson-like variational principle describing the
effective conductivity; see Lipton and Vernescu [8]. The effective conductivity is
given by

(σ−e)
−1 j · j = min

j∈W

∫
Q

c−1(x)|j + j|2 + β−1
∫

Γ
|
(
j + j

)
· n|2ds.(2.15)

The space of trial fields is given by

W =
{
j ∈ L2(Q)2|∇ · j = 0,

∫
Q

jdx = 0, j is Q periodic
}
.(2.16)

Last we remark that the field equations for two-phase “perfectly bonded” com-
posites are given by

∆ψ = 0 in each phase,(2.17)
σ1 (∇ψ + ζ)1 n = σ2 (∇ψ + ζ)2 · n,(2.18)

and the fluctuating potential ψ is continuous across the phase interface. The associ-
ated effective conductivity is denoted by σpe and defined by

σp
eζ =

∫
∂Q

σ(x) (∇ψ + ζ) · nxds.(2.19)

REMARK 2.1. For composites with highly conducting interface we remark that
in the α = 0 limit the effective conductivity reduces to the effective conductivity of a
perfectly bonded composite. Similarly, the effective conductivity of a composite with
interfacial contact resistance agrees with that of a perfectly bonded composite in the
β =∞ limit.

3. Reciprocal relations, phase interchange theorems, and field rela-
tions. We partition the unit square Q into three sets, Ya, Yb, and Γ. Here Γ
denotes the two-phase interface, and the regions Ya and Yb can be filled with either
conductor σ1 or σ2. For a fixed two-phase geometry the effective conductivity tensor
may be regarded as a matrix-valued function of its component conductivities. We
consider the effective conductivity for a composite with highly conducting interface
and write σ+

e = (σ1, σ2, α), where the first argument represents the conductivity in
Ya, the second is the conductivity in Yb, and the third is the conductivity on the
interface. One readily checks that this function is homogeneous of degree one in its
arguments; i.e., for any scalar t

σ+
e (tσ1, tσ2, tα) = tσ+

e (σ1, σ2, α) .(3.1)

The corresponding effective conductivity tensor of a composite with interfacial contact
resistance is also homogeneous of degree one in its component conductivities σ1, σ2,
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and β, and we write σ−e = σ−
e(σ1, σ2, β). We introduce the matrix R associated

with a counterclockwise rotation of π/2 radians and state the following theorem.
THEOREM 3.1 (reciprocal relation).

σ+
e(σ1, σ2, α) = R

(
σ−

e

(
1
σ1
,

1
σ2
,

1
α

))−1

RT .(3.2)

It follows from Theorem 3.1 that the tensors σ+
e (σ1, σ2, α) and σ−e( 1

σ1
, 1
σ2
, 1
α ) are

simultaneously diagonalizable. Denoting the eigenvalues of σ+
e and σ−e by (σ+

e
1, σ+

e
2)

and (σ−e1, σ−
e
2), respectively, we have the following corollary.

COROLLARY 3.2.

σ−
e
2

(
1
σ1
,

1
σ2
,

1
α

)
= 1/σ+

e
1 (σ1, σ2, α)(3.3)

and

σ−
e
1

(
1
σ1
,

1
σ2
,

1
α

)
= 1/σ+

e
2 (σ1, σ2, α) .(3.4)

We make use of the homogeneity property of the functions σ+
e and σ−e to obtain

the following phase interchange identity.
COROLLARY 3.3 (phase interchange identity for anisotropic composites).

σ−
e
2

(
σ2, σ1,

σ1σ2

α

)
/σ2 = σ1/σ+

e
1 (σ1, σ2, α)(3.5)

and

σ−
e
1

(
σ2, σ1,

σ1σ2

α

)
/σ2 = σ1/σ+

e
2 (σ1, σ2, α) .(3.6)

When the composite is isotropic, the effective conductivity is a scalar-valued func-
tion, and from Corollary 3.3 we obtain the following corollary.

COROLLARY 3.4 (phase interchange identity for isotropic composites).

σ−
e
(
σ2, σ1,

σ1σ2

α

)
σ+

e (σ1, σ2, α) = σ2σ2.(3.7)

We now show how to recover Keller’s (1964) and Mendelson’s (1975) phase inter-
change result in the limit as the tangential conductivity tends to zero. The effective
conductivity function of a perfectly bonded composite depends upon the bulk con-
ductivities only. Thus, for a composite of conductivity c1 in Ya and c2 in Yb we write
σp
e = σp

e(c1, c2). From Remark 2.1, it follows that

σ+
e (c1, c2, 0) = σ−

e (c1, c2,∞) = σp
e (c1, c2) .(3.8)

Passing to the α = 0 limit in Corollary 3.3 and applying (3.8), we recover the
following phase interchange relation:

σp2
e (σ2, σ1) /σ2 = σ1/σp1

e (σ1, σ2) .(3.9)

Equation (3.9) is precisely Keller’s result [4] when the composite possesses rect-
angular symmetry. When the effective conductivity is diagonal, (3.9) is the relation
pointed out by Mendelson [10]. For a partition of Q into the sets Ya, Yb, and Γ,
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we denote as before the electric field ∇ϕ̃ + E for a composite conductor with highly
conducting interface with conductivity σ1 in Ya, σ2 in Yb, and tangential conduc-
tivity α on Γ. We denote by j̃ the current in a composite conductor with interfacial
contact resistance with conductivity σ1

−1 in Ya, σ2
−1 in Yb, and interfacial barrier

conductance α−1 on Γ. We show that these fields are related by a counterclockwise
rotation of π/2 radians.

THEOREM 3.5.

∇ϕ̃+ E = Rj̃ in Ya,(3.10)

and

∇ϕ̃+ E = Rj̃ in Yb,(3.11)

where

j̃ = σ1
−1
(
∇ψ̃ + ζ

)
in Ya(3.12)

and

j̃ = σ2
−1
(
∇ψ̃ + ζ

)
in Yb.(3.13)

Here the fluctuating field ψ̃ is a solution of the field equations (2.11)–(2.13) with
ζ = RTσ+

eE, c1 = σ1
−1, c2 = σ2

−1, and β = α−1.
We conclude this section with proofs of Theorems 3.1 and 3.5.
Proof of Theorem 3.1. For a fixed partition Ya ∪ Yb ∪ Γ = Q, we consider a

composite with interfacial barrier resistance with conductivity c1 in Ya, c2 in Yb,
and barrier conductance β on Γ. From the variational principle (2.15) we have for
any constant current j the identity

(σ−e(c1, c2, β))−1 j · j = min
j∈W

∫
Q

c−1(x)|j + j|2 + β−1
∫

Γ
|(j + j) · n|2dS.(3.14)

We observe that every field j inW is representable by aQ-periodic stream function
ϕ in W 1,2(Q), where

j = RT∇ϕ.(3.15)

Substitution of (3.15) into (3.14) yields

(σ−e(c1, c2, β))−1 j · j = min
ϕ∈V

∫
Q

c−1(x)|∇ϕ+Rj|2 + β−1
∫

Γ
|
(
∇ϕ+Rj

)
· t|2dS,(3.16)

where t is the unit tangent vector to the interface and t = Rn. Here V is the class
of trials given by (2.9). Next we observe that in two dimensions δiϕ = (∇ϕ · t)ti and
that the second term on the right-hand side of (3.16) can be written as∫

Γ
|δ(ϕ+Rj · x)|2dS.(3.17)

Last, applying (3.17) and writing j = RTRj on the left-hand side of (3.16) we
obtain

R (σ−e(c1, c2, β))−1RTRj · Rj

= min
ϕ∈V

∫
Q

c−1(x)|∇ϕ+Rj|2 + β−1
∫

Γ
|δ(ϕ+Rj · x)|2dS.(3.18)
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Substitution of E = Rj into the variational principle (2.8) gives

σ+
e(σ1, σ2, α)Rj · Rj = min

ϕ∈V

∫
Q

σ(x)|∇ϕ+Rj|2dr + α

∫
Γ
|δ(ϕ+Rj · x)|2dS.(3.19)

Choosing β = α−1, c1 = σ1
−1, c2 = σ2

−1 in (3.18), it follows from (3.19) that

σ+
e(σ1, σ2, α) = R

(
σ−

e

(
1
σ1
,

1
σ2
,

1
α

))−1

RT ,(3.20)

and the theorem is proven.
Proof of Theorem 3.5. We suppose that ϕ̃ in W 1,2(Q) is the periodic solution of

the field equations given by (2.2) and (2.3), with conductivity σ1 in Ya, σ2 in Yb,
and tangential conductivity α on Γ. We introduce the potential ψ defined up to a
constant in each phase by

∇ϕ̃+ E = Rσ1
−1 (∇ψ + ζ) in Ya(3.21)

and

∇ϕ̃+ E = Rσ2
−1 (∇ψ + ζ) in Yb.(3.22)

Multiplying both sides of (3.21) and (3.22) by RT and taking the divergence of
both sides yield

∆ψ = 0 in Ya ∪Yb.(3.23)

Since ϕ̃ lies in W 1,2(Q) the jump in ϕ̃ across phase interfaces is zero and so

[(∇ϕ̃+ E) · t] = 0,(3.24)

where [·] denotes a jump in a quantity across Γ and t = Rn is the unit tangent to the
interface. Applying (3.21) and (3.22) and taking traces we find that

σ1
−1 (∇ψ + ζ)1 · n− σ2

−1 (∇ψ + ζ)2 · n = [(∇ϕ̃+ E) · t] = 0.(3.25)

Applying (3.21) and (3.22) and taking traces in (2.3) yield

− ((∇ψ + ζ)1 · t− (∇ψ + ζ)2 · t) = α∆ (ϕ̃+ E · x)(3.26)

on Γ.
We observe that on the interface ∆ (ϕ̃+ E · x) = ∂2

t (ϕ̃+ E · x), where ∂t is the
usual tangential derivative. Integration of (3.26) along the interface yields

− (ψ1 − ψ2) = α (∂tϕ̃+ E · t) +K,(3.27)

where K is a constant of integration.
Applying (3.22) and taking traces give

−α−1 (ψ1 − ψ2) = σ2
−1 (∇ψ + ζ)2 · n +K.(3.28)

Noting that the potential ψ is defined up to a constant in each phase we choose
ψ such that K = 0 in (3.28). Taking the volume average of ∇ϕ̃+ E and application
of (3.12) and (3.13) show that ζ = RTσ+

eE, and we conclude that ψ is a solution of
(2.11)–(2.13) with c1 = σ1

−1, c2 = σ2
−1, β = α−1, and ζ = RTσ+

eE. The theorem
follows from (3.21) and (3.22), noting that the current in the composite with interfacial
barrier resistance is given by j̃ = σ1

−1 (∇ψ + ζ) in Ya and j̃ = σ2
−1 (∇ψ + ζ) in Yb.
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4. Rescaling and size effects. We consider rescaled versions of a given two-
phase geometry. It is shown that the effective property monotonically increases as
the scale of the period tends to zero. We let ` be a positive integer and µ be a
positive scalar. We consider a composite with tangential conductivity α = µ` and
local conductivity σ(x) taking the values σ1 and σ2. We denote the associated effective
conductivity and fluctuating potential by σ+

` and ϕ̃`. Hence σ+
` is given by

σ+
`E · E =

∫
Q

σ(x)|∇ϕ̃` + E|2dx+ µ`

∫
Γ
|δ
(
ϕ̃` + E · x

)
|2dS.(4.1)

REMARK 4.1. One observes from the variational formulation (2.8) that σ+
` is

monotone increasing in ` (in the sense of quadratic forms).
Next, we consider a composite with a rescaled local conductivity σ`(x) = σ(`x)

and tangential conductance α = µ. We denote the associated effective conductivity
tensor and fluctuating potential by σ+

e,` and ϕ̂`, respectively. The effective conduc-
tivity σ+

e,` is given by

σ+
e,`E · E =

∫
Q

σ`(x)|∇ϕ̂` + E|2dx+ µ

∫
Γ`
|δ
(
ϕ̂` + E · x

)
|2dS.(4.2)

Here Γ` is the two-phase interface. One easily checks that the two potentials are
related by

ϕ̂`(x) = `−1ϕ̃`(`x).(4.3)

Upon substitution of (4.3) into (4.2) and rescaling we obtain the following.
THEOREM 4.2 (size effect theorem). The effective conductivity of a composite

with local conductivity σ(x) and tangential conductivity µ` is identical to that of a 1/`
periodic composite with local conductivity σ`(x) = σ(`x) and tangential conductivity
µ, i.e.,

σ+
e,` = σ+

`.(4.4)

Moreover, from Remark 4.1 it follows that the effective tensor σ+
e,` increases

monotonically as the scale of the period (given by `−1) tends to zero.
Physically, this corresponds to the fact that the surface-to-volume ratio of the

highly conducting interface increases as the scale of the period tends to zero.
REMARK 4.3. An identical proof shows that σ+

e,` = σ+
` for periodic three-

dimensional conductors, and one naturally has that σ+
e,` is monotone increasing as

the scale of the period tends to zero.

5. Bounds on the effective conductivity tensor. The reciprocal relation
provides a means of obtaining bounds on the effective conductivity tensor for com-
posites with highly conducting interface in terms of bounds on the effective tensor
for composites with interfacial contact resistance. In Lipton and Vernescu [8], upper
and lower bounds on the effective conductivity for composites with interfacial con-
tact resistance were obtained. To fix ideas in this section and in section 6 we will
consider only suspensions for which the associated effective tensor is isotropic. Such
suspensions include those possessing cubic symmetries; cf. Nye [12]. We show how to
obtain new bounds for the effective conductivity of particulate composites with highly
conducting interface.

We suppose that the disconnected region occupied by the particles is denoted by
Ya and the matrix region by Yb. We suppose that the conductivity of the particles
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is σ1 and that of the matrix is σ2, with σ1 < σ2. For a tangential conductivity α,
the effective conductivity is written σ+

e (σ1, σ2, α). The effective conductivity for the
same geometry but with interfacial barrier resistance α and particle and matrix con-
ductivities σ1

−1 and σ2
−1, respectively, is written σ−

e
(
σ1
−1, σ2

−1, α−1
)
. We denote

the specific interfacial arclength by s and the particle and matrix area fractions by θa
and θb, respectively. The area fractions satisfy θb = 1− θa. Appealing to the bounds
(II 2.10) and (III 3.38) given in Lipton and Vernescu [8], we have

L
(
σ1
−1, σ2

−1, α−1, θa
)
≤ σ−e

(
σ1
−1, σ2

−1, α−1) ≤ U (σ1
−1, σ2

−1, α−1, θa
)
.(5.1)

Here the lower bound is given by

L
(
σ1
−1, σ2

−1, α−1,m, θa
)

= σ2
−1 − σ2

−1((1−m)−1 +
(
σ2
−1θac

)−1
)−1

,(5.2)

where c = sα
2θa
− (σ2 − σ1) and m is the effective conductivity of the connected

matrix phase filled with material of unit conductivity and particles filled with perfect
insulators. We remark that the quantity m−1 is often referred to in the porous media
literature as the formation factor (cf. Dullien [2]). A second often-used parameter
is the electrical tortuosity. This parameter can be obtained from nuclear magnetic
resonance measurements. Roughly speaking the electrical tortuosity measures the
effective average path length in a porous media, taking into account the effect of
the constriction between inclusions. The formation factor is related to the electrical
tortuosity τ of the matrix phase by

τ =
θb
m
.(5.3)

The upper bound on σ−
e is given by

U
(
σ1
−1, σ2

−1, α−1, k, θa
)

=
(
σ1 +

θbk/(2α) + θ2
aλ+ θa/(2σ1)

λk/(2α) + θaθbλ/(2σ1) + θak/(4ασ1)

)−1

.(5.4)

Here λ = (σ2−σ1)−1 and the parameter k is a geometric parameter of the interface
defined by

k = Σj
∫
∂Yj

|y − rj |2dS,(5.5)

where ∂Yj is the surface of the jth particle, rj = |(∂Yj)|−1
∫
∂Yj y ds, and the sum is

taken over all particles. The bound is easily seen to be monotonically decreasing in
k. We apply Theorem 3.1 together with the bounds on σ−

e to obtain the following
theorem.

THEOREM 5.1 (bounds on effective conductivity for composites with highly con-
ducting interface). The effective conductivity σ+

e(σ1, σ2, α) for an isotropic suspen-
sion of particles of conductivity σ1 in a matrix of σ2, with tangential conductivity
α, fixed specific arclength s, matrix phase tortuosity τ , interface parameter k, and
particle area fraction θa, satisfies

L+(σ1, σ2, α, k, θa) ≤ σ+
e(σ1, σ2, α) ≤ U+(σ1, σ2, α, τ, θa),(5.6)

where

L+(σ1, σ2, α, k, θa) = (U
(
σ1
−1, σ2

−1, α−1, k, θa
)

)−1

= σ1 +
θbk/(2α) + θ2

aλ+ θa/(2σ1)
λk/(2α) + θaθbλ/(2σ1) + θak/(4ασ1)

(5.7)
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and

U+(σ1, σ2, α, τ, θa) = (L
(
σ1
−1, σ2

−1, α−1,m, θa
)

)−1

= σ2

(
1− 1

(1− θb/τ)−1 + (σ2
−1θac)

−1

)−1

.(5.8)

REMARK 5.2. Elementary bounds show that 0 ≤ m ≤ θb; hence the tortuosity
satisfies 1 ≤ τ ≤ ∞.

Analysis shows that for fixed tortuosity, area fraction, and α ≥ 0, U+(σ1, σ2, α, τ, θa)
is monotone increasing in α and

σ+
e(σ1, σ2, α) ≤ U+ (σ1, σ2, α, τ, θa) ≤ U+(σ1, σ2,∞, τ, θa)

= σ2τ/θb.(5.9)

REMARK 5.3. Passing to the limit α = ∞ in (2.8) shows that σ+
e = σ2τ/θb. In

this way we see that the upper bound is optimal in this limit. (The passage to the limit
α =∞ is justified using standard epi-convergence arguments; cf. Attouch [1].)

On the other hand, the bound U+ (σ1, σ2, α, τ, θa) is found to be monotone in-
creasing in τ for fixed area fraction and α ≥ 0. Calculation shows that

σ+
e(σ1, σ2, α) ≤ U+(σ1, σ2, α, τ, θa) ≤ U+(σ1, σ2, α,∞, θa)

= θaσ1 + θbσ2 + s
α

2
.(5.10)

Here U+(σ1, σ2, α,∞, θa) is the analogue of the Wiener upper bound for per-
fectly bonded conductors. For fixed values of k one easily sees that the lower bound
L+(σ1, σ2, α, k, θa) is monotone decreasing in α. Passing to the α = 0 limit we have

σ+
e(σ1, σ2, α) ≥ L+(σ1, σ2, α, k, θa) ≥ L+(σ1, σ2, 0, k, θa)

= σ1 +
θb

1
σ2−σ1

+ θa
2σ1

≡ HS−.(5.11)

Here HS− is the Hashin–Shtrikman lower bound for perfectly bonded two-phase
conductors [5].

6. Size effects, critical radius, and energy-minimizing polydisperse sus-
pensions of disks. We consider suspensions of inclusions of conductivity σ1 embed-
ded in a matrix of higher conductivity σ2. For fixed-component volume fractions
we use the monotonicity of the bounds in the interfacial parameter k and specific
surface s to identify a distinguished parameter Pcr = α/(σ2 − σ1). We shall show
for monodisperse suspensions of disks that Pcr picks out the scale at which the ef-
fects of the interface balance the conductivity mismatch between component phases.
The bounds will also serve as a tool for understanding the role of surface energy in
problems of energy-minimizing arrangements of polydisperse suspensions of disks.

In this section we will consider only suspensions for which the associated effective
tensor is isotropic.

We start by considering monodisperse suspensions of disks. We fix the area
fraction of particles and state the following.

THEOREM 6.1. Given that the common radius of a monodisperse suspension of
disks is r, then

σ+
e(σ1, σ2, α) > σ2 for r < Pcr,(6.1)

σ+
e(σ1, σ2, α) < σ2 for r > Pcr,(6.2)
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and

σ+
e(σ1, σ2, α) = σ2 for r = Pcr.(6.3)

Proof. For monodisperse suspensions of common radius r the geometric parame-
ters k and s are given by

k = 2θar, s = 2θar−1.(6.4)

When r = Pcr substitution of (6.4) into the upper bound U+ gives

U+ = σ2.(6.5)

For r = Pcr substitution of (6.4) into the lower bound L+ gives

L+ = σ2,(6.6)

and (6.3) is proven. Inequalities (6.1) and (6.2) follow immediately from the mono-
tonicity of the bounds in the geometric parameters.

Theorem 6.1 shows that the mismatch between matrix and particle conductivity
is compensated by the highly conducting interface for particles with radius Pcr. In
the following section we will show that this phenomenon persists for any dispersion
of particles of radius Pcr.

For polydisperse suspensions of disks we define the mean radius 〈r〉 of the sus-
pension by

〈r〉 =
N∑
j=1

|Yj |
θa

aj ,(6.7)

where aj is the radius of the jth disk, Yj is the region occupied by the jth disk, |Yj |
is its area fraction, and θa is the total volume area occupied by the particles.

For polydisperse suspensions of spheres we state the following theorem.
THEOREM 6.2 (size effect theorem for polydisperse suspensions of disks). For

polydisperse suspensions of disks of conductivity σ1 and matrix of conductivity σ2
with σ1 < σ2 and particle area fraction θa, if 〈r〉 ≤ Pcr, then

σ+
e(σ1, σ2, α) ≥ σ2.(6.8)

One has equality in (6.8) only if

〈r〉 = Pcr.(6.9)

Proof. For polydisperse suspensions of disks, the parameter k is given by

k = 2θa〈r〉.(6.10)

Substitution of (6.10) into the lower bound (5.7) shows that the lower bound is
strictly monotonically increasing as the mean radius tends to zero. For 〈r〉 = Pcr one
has

L+(σ1, σ2, α, 2θa〈r〉, θa) = σ2,(6.11)

and the theorem follows.



RECIPROCAL RELATIONS AND BOUNDS 359

We now consider particulate suspensions with no assumption on particle shape or
distribution other than that the resulting effective conductivity is isotropic. For this
case we have the following theorem.

THEOREM 6.3. For suspensions of particles of conductivity σ1 in a matrix of
conductivity σ2, with σ2 > σ1 and the particle area fraction θa prescribed, if the
specific arclength s is bounded above by 2θaP−1

cr , i.e.,

s ≤ 2θaP−1
cr ,(6.12)

then

σ+
e(σ1, σ2, α) ≤ σ2.(6.13)

Proof. For s = 2θaP−1
cr it follows from (5.8) that the upper bound U+ = σ2.

Moreover, since the upper bound is monotone increasing in s, one has that U+ ≤ σ2
for s ≤ 2θaP−1

cr , and the theorem follows.
It is evident from its definition, that effective conductivity is equivalent to the

energy dissipated inside a two-phase conductor; see (2.7). In this regard, we see that
Theorems 6.1, 6.2, and 6.3 are energy-dissipation theorems for a system with bulk and
interfacial energy. In what follows we consider only isotropic polydisperse suspensions
of disks. We fix the area fraction of disks and examine the role of surface energy in
selecting a suspension with minimum isotropic effective conductivity σ+

e(σ1, σ2, α).
In what follows we present a necessary condition on the size distribution of the disks
appearing in the optimal suspension. We remark that it is not known if a minimal
suspension exists. Instead, as with many problems, there may be no minimum but
only a minimizing sequence of suspensions. For this case, the same necessary condition
will hold in the appropriate sense for minimizing sequences of suspensions.

To fix ideas we suppose that the area fraction of disks satisfies the inequality

θa < π/4.(6.14)

That is, that the area fraction is less than a circle of radius 1/2 inscribed within
the unit cell. Moreover, we restrict the parameters σ1, σ2, and α so that Pcr satisfies
the constraint

πP2
cr < θa.(6.15)

The above states that we consider only cases where the area of a single disk of
critical radius (Pcr) is strictly less than the area fraction occupied by the suspension.
We have the following theorem characterizing the optimal polydisperse suspension
minimizing the effective conductivity.

THEOREM 6.4 (optimal design necessary condition). Given θa and σ1, σ2, and α
satisfying the constraints (6.14) and (6.15), the mean radius of the optimal distribution
of spheres minimizing σ+

e(σ1, σ2, α) is greater than Pcr.
Proof. From Theorem 6.2 we know that if the mean radius lies below Pcr, then

σ+
e ≥ σ2. So to establish the theorem we construct a polydisperse suspension of

spheres with mean radius greater than Pcr with effective conductivity less than σ2.
The construction is simple in view of (6.14) and (6.15). Indeed, take a suspension
consisting of a single sphere centered in the period cell of radius r such that

πr2 = θa.(6.16)
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Then for this suspension,

s/(2θa) = r−1.(6.17)

From (6.14) and (6.15) we see that

r−1 < P−1
cr ;(6.18)

therefore,

s < 2θ2P−1
cr .(6.19)

We conclude from (6.19) and Theorem 6.3 that σ+
e < σ2, and the theorem is estab-

lished.
This theorem shows that the scale of the heterogeneity plays a role in the extremal

transport properties of a polydisperse distribution of disks. This is in striking contrast
to optimal layout problems with perfect transmission between phases where scale plays
no role in the optimal design; see Lurie and Cherkaev [9] and Murat and Tartar [11].
We observe that these effects are a direct result of the surface energy dissipated by
composites with highly conducting interfaces.

7. Cloaking of inclusions. In the previous section we used bounds to find a
critical radius for monodisperse suspensions with isotropic effective conductivity ten-
sor. At this radius the effective conductivity of the suspension is seen to equal that of
the matrix. Here we show that this phenomenon persists even for anisotropic suspen-
sions in arbitrary domains. In doing so we obtain a fundamental result concerning
the behavior of electric fields inside suspensions at critical radius.

We consider two- and three-dimensional monodisperse suspensions of disks
(spheres) of conductivity σ1 embedded in a matrix of σ2 with σ2 > σ1. The sus-
pension is contained inside a bounded open set in Ω in Rd (d = 2, 3) with Lipschitz
boundary. We require that none of the inclusions touch each other or intersect the
boundary of Ω. We suppose that the suspension consists of N spheres of equal radius.
The boundary of the mth sphere is denoted by ∂Ym, and the union of all sphere
boundaries is written as Γ. The electric potential ϕ inside the suspension satisfies

∆ϕ = 0 in each phase,(7.1)

[ϕ]12 = 0 on ∂Ym, m = 1, . . . N,(7.2)

[σ(x)∇ϕ · n]12 = αδ2
i ϕ on ∂Ym, m = 1, . . . , N.(7.3)

Here n is the unit outer normal to ∂Ym and [·]12 denotes the jump in a quantity
across the two-phase interface. We inject a uniform current into boundary ∂Ω, i.e.,

σ2∂nϕ = σ2E · n on δΩ,(7.4)

where E is a constant electric field in Rd. Integration by parts shows that the total
energy dissipation rate W inside the composite is given by

W =
∫
∂Ω
ϕσ2∂nϕdS =

∫
Ω
σ(x)|∇ϕ|2dx+ α

∫
Γ
|δϕ|2dS.(7.5)

For d = 2 we have as in the previous section

Pcr = α/(σ2 − σ1),(7.6)
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and for d = 3 we introduce P̃cr, defined by

P̃cr = 2α/(σ2 − σ1).(7.7)

We consider values for the conductivities σ1, σ2, α for which monodisperse sus-
pensions of nonintersecting disks (spheres) of radius Pcr (P̃cr) are contained in the
region Ω and state the following theorem.

THEOREM 7.1. The electric field inside a monodisperse suspension of disks
(spheres) of radius Pcr (P̃cr) contained inside Ω is uniform. The associated elec-
tric potential ϕ is given by

ϕ = E · x in Ω,(7.8)

and the current j inside Ω is given by

j =
{
σ1E inside each sphere,
σ2E in the matrix,(7.9)

where ϕ and j given by (7.8) and (7.9) are independent of the number and location of
the spheres.

We see that the potential in the suspension is the same as if there were no particles
of conductivity σ1. A straightforward calculation shows the following.

COROLLARY 7.2. The total energy dissipation rate W for a monodisperse suspen-
sion of disks (spheres) of critical radius Pcr (P̃cr) is given by

W = (σ2E ·E)|Ω|(7.10)

independently of the number and location of the spheres.
REMARK 7.3. We observe that the energy dissipation rate given by (7.10) is iden-

tical to the dissipation rate obtained if the region were composed only of σ2 conductor.
On the other hand, suppose that we are given a suspension of N spheres of

common radius r contained in Ω ⊂ R3, and we are free to choose the particle, matrix,
and tangential conductivities. Then we have the following corollary.

COROLLARY 7.4 (cloaking of spheres). Given a monodisperse suspension of N
spheres of radius r such that the spheres are not touching or come into contact with
the boundary. Then if the tangential conductivity α and conductance mismatch σ2−σ1
are chosen such that σ2 − σ1 > 0 and

2α
σ2 − σ1

= r,(7.11)

then the electric field inside the composite is uniform and the associated potential and
current are given by (7.7) and (7.8).

REMARK 7.5. For two-dimensional monodisperse suspensions of disks the conclu-
sion of Corollary 7.4 is obtained, provided that σ2 − σ1 > 0 and

α

σ2 − σ1
= r.(7.12)

REMARK 7.6. If both the common radii r of the spheres and the conductivities σ2
and σ1 with σ2 > σ1 are prescribed, then Corollary 7.4 shows one how to choose the
appropriate tangential conductivity α to render the spheres undetectable.

We now give the proof of Theorem 7.1. To fix ideas we treat the three-dimensional
problem noting that the two-dimensional solution follows the same lines. To establish
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the theorem we consider a suspension of N spheres of common radius r with centers
denoted by rm. We suppose that the potential ϕ is of the form

ϕ =
{

E · x in the matrix,
ζ · x+ cj in the jth particle,(7.13)

where cj is a constant and ζ is a constant vector in R3. We show that for r = P̃cr
there exists a potential of the form (7.13) and it is given by (7.8).

To start, we see that the function given by (7.13) satisfies (7.1) and (7.4). Conti-
nuity of the potential implies the compatibility condition

ζ −E = λn on ∂Ym,(7.14)

where λ is a scalar to be determined.
Since ϕ is continuous, we have

1
|Ω|

∫
Ω
∇ϕdx = E = θaζ + θbE.(7.15)

It is evident from (7.15) and θa = 1 − θb that ζ = E and (7.14) holds with λ = 0.
Thus we find that ϕ = E · x in Ω. On the other hand, (7.3) becomes

(σ1 − σ2)E · n = αδ2
i (E · x) on ∂Ym(7.16)

and must be satisfied. This equation provides the extra condition necessary to deter-
mine the common radius of the suspension.

Computation of δ2
i (E · x) on the mth sphere and rewriting (7.16) give

(σ1 − σ2)E · n = −α
r

2E · n on ∂Ym.(7.17)

It is easily seen that (7.17) holds, provided that r = P̃cr, and the theorem is
proven.
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