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1 Introduction

In the study of optimal design of composite structures, much effort has focused on problems
of optimization of design criteria in the absence of constraints on the gradients of field
variables. In this article a theory is developed for the relaxation of optimal design problems
for multiphase composite structures in the presence of constraints on the gradient. An
example of where such a theory would be useful is the design of a multi-phase insulator with
a prescribed overall dielectric constant subject to the constraint that inside the composite
the electric field does not exceed a critical value. This type of problem is important in the
applications (Ref. 1), where large values of the local electric field are attributed to material
breakdown (Ref. 2).

To fix ideas the paper is written in the physical context of multiphase dielectric materials.
The design domain is a bounded open set Ω in Rm and the multi-phase dielectric is made up
of N anisotropic dielectric materials with dielectric constants given by the m×m symmetric
positive matrices A1, A2, A3, . . . , AN . A particular choice of component dielectric constants
is specified by the array A = (A1, A2, A3, . . . , AN) and the dielectric constant at each point
in the design domain is given by C(A, x) =

∑N
i=1 χi(x)Ai. Here χi is the indicator function

of the set occupied by the ith dielectric phase and χi = 1 for x in the ith phase and zero
elsewhere. The design space consists of all partitions of Ω into N Lebesgue measurable
subsets Ω1,Ω2, . . . ,ΩN occupied by the different dielectrics subject to the resource constraints
meas(Ωi) ≤ γi. Here

∑
i γi ≥ meas(Ω) and the vector of resource constraints is written as

γ = (γ1, γ2, . . . , γN). The electric potential in the composite is denoted by φ and for a
prescribed distributed charge density f satisfies

−div (C(A, x)∇φ) = f. (1)

Here the potential φ is zero on the boundary of Ω. From the theory of Poisson’s equation it is
well known that the potential lies in the Sobolev space H1

0 (Ω) and f can be chosen from the
dual space H−1(Ω). The design criteria is a function of the potential and is denoted by F (φ).
The type of criteria considered here are those associated with overall energy dissipation given
by F (φ) =

∫
Ω φ f dx or the distance of the potential from a desired target potential φ̂ given

by F (φ) =
∫
Ω |φ − φ̂|2 dx. Both of these objective functions are continuous with respect to

weak convergence in H1
0 (Ω). The results given here are not restricted to this situation and

apply to any design criteria that is continuous with respect to G convergent sequences of
designs (Ref. 3).

For a given toleranceK > 0 and a prescribed nonnegative function p(x) the basic gradient
constraint is given by ∫

Ω
p(x)|∇φ|2 dx ≤ K2. (2)

For simplicity p(x) is chosen to be in the space of infinitely differentiable functions continuous
on the closure of Ω, i.e., p(x) in C∞(Ω). For a finite collection of functions p1, p2, . . . , pj one
has the set of constraints given by∫

Ω
pk(x)|∇φ|2 dx ≤ K2, pk(x) ≥ 0, k = 1, 2, . . . , j. (3)
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Last one may consider the infinite number of constraints given by∫
Ω
p(x)|∇φ|2 dx ≤ K2

∫
Ω
p(x) dx, for all p(x) ≥ 0 in C∞(Ω), (4)

which is equivalent to the local constraint

|∇φ| ≤ K, almost everywhere in Ω. (5)

The basic gradient constrained optimal design problem is given by

P = inf
Configurations,

meas(Ωi)≤γi

F (φ) (6)

where φ is a solution of the equation of state (1) and is subject to the gradient constraint
given by (2). Optimal design problems subject to a finite or an infinite number of gradient
constraints are formulated in the same way.

The goal of this analysis is to present a theory of relaxation for these problems that
provides the theoretical underpinnings for a numerical approach to the solution of the design
problem. The problem as stated above is not readily amenable to numerical solution. The
fundamental reason for this is that problems of this type do not possess configurations
for which the infimum in (6) is obtained, see (Refs. 4–6). Thus any approach that seeks to
identify optimal configurations is most likely to fail. Instead one must seek a methodology for
systematically identifying minimizing sequences of configurations that approach the infimum
of (6).

In the absence of gradient constraints, problems of this kind have been the object of
intense and fruitful study. One approach to these problems is the relaxation of the design
problem through the extension of the design space. This is accomplished using the theory
of homogenization. This approach can be found in the seminal work of (Ref. 7) and (Ref.
8). The approach taken here follows the philosophy given in (Ref. 7) and (Ref. 8) and
provides a relaxation of the design problem (6) through an extension of the design space.
However the extended design space for the gradient constrained design problem is seen to be
a generalization of the one developed for the unconstrained problem. Loosely speaking, in the
absence of gradient constraints the design space is extended to include all effective dielectric
tensors made from composites formed from the constituent dielectric materials. However for
gradient constrained optimal design problems it is found that the relaxed problem requires the
extension of the design space to include all effective dielectric tensors viewed as functions of
the dielectric tensors of the constituent materials.

In order to proceed the optimal design problem over configurations is reformulated in an
equivalent way. For a given array A a neighborhood N (A) of A is introduced. Arrays in this
neighborhood are denoted by P = (P1, P2, . . . , PN). The neighborhood is chosen such that
all matrices Pi in the array P satisfy the constraint 0 < λ < Pi < Λ. The associated set of
controls C(P , x) =

∑N
i=1 χi(x)Pi for P in the neighborhood N (A) for which

∫
Ω χidx ≤ γi is

denoted by C(A, γ) and the design problem is given by

P = inf
C(P ,x) in C(A,γ)

F (φ) (7)
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where φ is a solution of the equation of state (1) and is subject to the gradient constraint
given by (2). As before optimal design problems subject to a finite or an infinite number of
gradient constraints are formulated in the same way.

The notion of homogenization is given in the theories of G convergence and H convergence,
see (Ref. 9) and (Ref. 10). Both notions of convergence coincide for the problem addressed
here. A comprehensive introduction to the theory of G convergence together with extensive
references to the literature is given in (Ref. 11).

Definition 1.1 G Convergence. The sequence {Cn(P , x)}∞n=1 G converges to C∞(P , x) if
and only if, for any open set ω ⊂⊂ Ω and any f in H−1(ω), the solutions wn in H1

0 (ω) of

−div (Cn(P , x)∇wn) = f (8)

satisfy wn ⇀ w weakly in H1
0 (ω), Cn(P , x)∇wn ⇀ C∞(P , x)∇w weakly in L2(ω)N , where

w is the H1
0 (ω) solution of

−div (C∞(P , x)∇w) = f. (9)

The resource constraints for a G convergent sequence of controls is handled in the usual way
by assuming that the associated sequence of characteristic functions {χn

i }∞n=1 satisfy

χn
i ⇀ θi in L∞(Ω) weak ∗ . (10)

The design space is extended to include the set of all functions C∞(P , x) for which there
exists a sequence of controls {Cn(P , x)}∞n=1 G converging to C∞(P , x) for all P in N (A) and∫
Ω θidx ≤ γi. The set of all such functions C∞(P , x) is the G-closure of the set C(A, γ) and

is denoted by GC(A, γ). We point out that C(A, γ) is contained in GC(A, γ). Its evident that
the extension of design space introduced here is more general than the usual one in that
it involves the notion of tensor valued effective dielectric functions as opposed to effective
dielectric tensors.

The next step in the relaxation procedure is the correct description of the gradient con-
straints (2–5) in the extended design space. Given a sequence {Cn(P , x)}∞n=1 that G con-
verges to C∞(P , x) for every P in N (A) the local corrector function associated with the
sequence {Cn(A, x)}∞n=1 is introduced. Consider a cube Q(x, r) of sidelength r centered at
some point x in Ω. For r sufficiently small Q(x, r) is contained within Ω. Given a vector E
in RN , the local corrector function is written as ϕn,r

E where ϕn,r
E is the H1

0 (Q(x, r)) solution
of

−div (Cn(A, y)(∇ϕn,r
E + E)) = −div (C∞(A, y)E), for y in Q(x, r). (11)

The local corrector functions are used to define directional derivatives of the G-limit C∞(P , x)
in the following theorem.

Theorem 1.1 Given that {Cn(P , x)}∞n=1 G converges to C∞(P , x) for every P in N (A),
then the directional derivative of C∞(P , x) at A with respect to the ith component conduc-
tivity in the direction specified by the m×m symmetric matrix Mi is given by

∂C∞

∂Mi

E · E =
m∑

k=1

m∑
l=1

[Mi]kl

(
lim
r→0

lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
χn

i (∇kϕ
n,r
E + Ek)(∇lϕ

n,r
E + El) dy

)
(12)

and exists almost everywhere in Ω and for every E in Rm.
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From Theorem 1.1 it follows that the definition of the ith phase gradient denoted by
(∇i

klC
∞(A, x))E · E is given by the local formula

(∇i
klC

∞(A, x))E · E = lim
r→0

lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
χn

i (∇kϕ
n,r
E + Ek)(∇lϕ

n,r
E + El) dy (13)

and
(∇i

kkC
∞(A, x))E · E = lim

r→0
lim

n→∞
(1/|Q(x, r)|)

∫
Q(x,r)

χn
i |∇ϕ

n,r
E + E)|2 dy (14)

where repeated indicies indicate summation. Theorem 1.1 provides explicit formulas for the
derivatives of the G-limit in terms of the microscopic problems (11). The identification of
the suitable microscopic problems together with the local formulas (12–14) are necessary
for numerical solution schemes based on relaxation through homogenization, see (Ref. 12).
General differentiability properties of G-limits obtained without the use of local formulas are
presented in (Ref. 13). Differentiability properties for the the effective dielectric tensor in
the contexts of periodic homogenization and statistically homogeneous random media were
presented in (Ref. 14).

The relaxation scheme developed here follows from the homogenization result given below.
In order to state the result one considers a sequence of configurations and a function C∞(P , x)
for which the sequence of controls {Cn(P , x)}∞n=1 G converges to C∞(P , x) for every P in
N (A). From homogenization theory there exists a potential φ∞ such that the sequence of
potentials {φn}∞n=1 in H1

0 (Ω) satisfying

−div (Cn(A, x)∇φn) = f, (15)

converges weakly to φ∞ in H1
0 (Ω) where

−div (C∞(A, x)∇φ∞) = f. (16)

The following homogenization theorem allows one to pass to the homogenization limit in
the gradient constraints of the form (2–5).

Theorem 1.2 The Homogenization Limit of Weakly Converging Gradients.
For any function p(x) in C∞(Ω)

lim
n→∞

∫
Ω
p(x)|∇φn|2 dx =

∫
Ω
p(x)(σ(x) + I)∇φ∞ · ∇φ∞ dx, (17)

where the covariance matrix σ(x) is a non negative matrix defined by

σ(x)E · E =
N∑

i=1

(∇i
kkC

∞(A, x))E · E − |E|2, (18)

for all vectors E in Rm.

The homogenization limit of the gradient constraints is given in the following corollary
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Corollary 1.1 The Homogenization Limit of Gradient Constraints.
If for some nonnegative p in C∞(Ω) it is known that∫

Ω
p(x)|∇φn|2 dx ≤ K2 (19)

for the sequence {φn}∞n=1 given above, then ∇φ∞ satisfies∫
Ω
p(x)(σ(x) + I)∇φ∞ · ∇φ∞ dx ≤ K2. (20)

Similarly if one has the local constraint |∇φn| ≤ K almost everywhere in Ω then ∇φ∞
satisfies √

(σ(x) + I)∇φ∞ · ∇φ∞ ≤ K (21)

almost everywhere in Ω.

The covariance can be thought of as a new effective property characterizing the interaction
between the local microstructure and the macroscopic electric field −∇φ∞. It has been
introduced in the contexts of periodic and statistically homogeneous random composites in
(Refs. 15, 16). In the general context of G convergent sequences of matrices the local formula
for σ is given in Theorem 1.1 of Ref. 17.

The relaxed formulation for the basic gradient constrained optimal design problem is
introduced. For p(x) ≥ 0 and p(x) in C∞(Ω), the relaxed formulation of (7) is

QP = inf
C∞(P ,x) in GC(A,γ)

F (φ), (22)

subject to the constraint: ∫
Ω
p(x)(σ(x) + I)∇φ · ∇φ dx ≤ K2, (23)

where φ is the H1
0 (Ω) solution to the state equation

−div (C∞(A, x)∇φ) = f, (24)

and σ is defined by (18).
The first important feature of the relaxed problem is that the infimum of the relaxed

design problem is attained by a control in GC(A, γ), i.e.,

Theorem 1.3 There exists a control Ĉ∞(P , x) in GC(A, γ) and state variable φ̂ in H1
0 (Ω)

for which
−div (Ĉ∞(A, x)∇φ̂) = f (25)

and
QP = F (φ̂), (26)

where ∫
Ω
p(x)(σ̂(x) + I)∇φ̂ · ∇φ̂ dx ≤ K2 (27)

and

σ̂(x)E · E =
N∑

i=1

(∇i
kkĈ

∞(A, x))E · E − |E|2, (28)

for every E in Rm.
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The second important feature is the connection between the minimizer Ĉ∞(P , x) of the
relaxed problem and minimizing sequences of configurations. To make the connection the
following optimal design problems are introduced. For p(x) ≥ 0 and p(x) in C∞(Ω),

Pj = inf
C(P ,x) in C(A,γ)

F (φ), (29)

subject to the constraint: ∫
Ω
p(x)|∇φ|2 dx ≤ K2(1 + 1/j), (30)

where φ is the H1
0 (Ω) solution to the state equation

−div (C(A, x)∇φ) = f. (31)

Its clear that as j tends to infinity the constraints given in the design problems Pj approach
the constraint associated with (7). The problems Pj share the same feature as (7) in that they
are optimal design problems over configurations of N dielectrics. The connection between
the minimizer of the relaxed problem and minimizing sequences of configurations is given in
the following theorem.

Theorem 1.4 Given a minimizer Ĉ∞(P , x) of QP then there is a sequence of configurations
and associated controls {Cj(P , x)}∞j=1 in C(A, γ) such that for all P in N (A), the sequence

{Cj(P , x)}∞j=1 G-converges to Ĉ∞(P , x) and the state variables φj satisfy the constraints
(30). For this case one has

lim
j→∞

F (φj) = QP. (32)

Moreover, given any ε > 0 there exists an index J > 0 such that for all j > J ,

Pj ≤ F (φj) ≤ Pj + ε (33)

and

lim
j→∞

Pj = QP. (34)

Thus one can use the minimizer for the relaxed problem to recover nearly optimal constrained
gradient designs of N dielectrics.

The locally constrained optimal design problem is given by

inf
C(P ,x) in C(A,γ)

F (φ) (35)

where φ is a H1
0 (Ω) solution of the equation of state (1) and is subject to the gradient

constraint given by
|∇φ| ≤ K, almost everywhere in Ω. (36)
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The local constraint can also be given in the equivalent form (4). Moreover choosing a count-
able dense subset {pk}∞k=1 of the set of nonnegative functions in C∞(Ω) the local constraint
is equivalent to ∫

Ω
pk(x)|∇φ|2 dx ≤ K2

∫
Ω
pk(x) dx, for 1 ≤ k <∞. (37)

The relaxed formulation of (35) is

QR = inf
C∞(P ,x) in GC(A,γ)

F (φ), (38)

subject to the local constraint:√
(σ(x) + I)∇φ · ∇φ ≤ K almost everywhere in Ω (39)

where φ is the H1
0 (Ω) solution to the state equation

−div (C∞(A, x)∇φ) = f, (40)

and σ is defined by (18). The first important feature of the relaxed problem is that the
infimum of the design problem is attained by a control in GC(A, γ), i.e.,

Theorem 1.5 There exists a control Ĉ∞(P , x) in GC(A, γ) and state variable φ̂ in H1
0 (Ω)

for which
−div (Ĉ∞(A, x)∇φ̂) = f (41)

and
QR = F (φ̂), (42)

where √
(σ̂(x) + I)∇φ̂ · ∇φ̂ ≤ K almost everywhere in Ω (43)

and

σ̂(x)E · E =
N∑

i=1

(∇i
kkĈ

∞(A, x))E · E − |E|2, (44)

for every E in Rm.

The second important feature is the connection between the minimizer Ĉ∞(P , x) of the re-
laxed problem and minimizing sequences of configurations. To make the connection consider
a countable dense subset {pk}∞k=1 of the nonnegative functions in C∞(Ω). For a finite collec-
tion of these functions Sj = {pk}j

k=1 the following optimal design problems are introduced

P̃j = inf
C(P ,x) in C(A,γ)

F (φ), (45)

subject to the constraints:∫
Ω
pk(x)|∇φ|2 dx ≤ K2

∫
Ω
pk(x)(1 + 1/j) dx, for pk in Sj (46)
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where φ is the H1
0 (Ω) solution to the state equation

−div (C(A, x)∇φ) = f. (47)

Its clear that as j tends to infinity the constraints given in the design problems P̃j approach
the constraint given by (37). The problems P̃j share the same feature as (35) in that they
are optimal design problems over all configurations of N dielectrics. The connection between
the minimizer of the relaxed problem and minimizing sequences of configurations is given in
the following theorem.

Theorem 1.6 Given a minimizer Ĉ∞(P , x) of QR then there is a sequence of configurations
and associated controls {Cj(P , x)}∞j=1 in C(A, γ) such that for all P in N (A), the sequence

{Cj(P , x)}∞j=1 G-converges to Ĉ∞(P , x) and the state variables φj satisfy the constraints
(46). For this case one has

lim
j→∞

F (φj) = QR. (48)

Moreover, given any ε > 0 there exists an index J > 0 such that for all j > J ,

P̃j ≤ F (φj) ≤ P̃j + ε (49)

and
lim
j→∞

P̃j = QR. (50)

Thus one can use the minimizer for the relaxed problem to recover nearly optimal constrained
gradient designs of N dielectrics.

The paper is organized as follows. In the next section the local formula for the derivative
of the effective dielectric tensor viewed as a function of its constituent dielectric constants
is derived together with a local homogenization theorem. In section three Theorem 1.2 is
derived and the relaxation theorems are proved in section four. An overview of the results
given here together with the recent results for problems where the design criteria is given in
terms of the L2 norm of the gradient are discussed in the conclusion.

2 Local Formulas for the Derivative the G Limit and

Local Homogenization

In this section we prove Theorem (1.1). We consider a sequence {Cn(P , x)}∞n=1 that G
converges to C∞(P , x) for every P in N (A). Given the sequence {Cn(A, x)}∞n=1, a vector E
in Rm and an open set ω ⊂ Ω we introduce the local corrector functions ϕn

E where ϕn
E is the

H1
0 (ω) solution of

−div (Cn(A, x))(∇ϕn
E + E)) = −div (C∞(A, x)E), in ω. (51)

Equation (51) is written in the variational form given by∫
ω
Cn(A, x) (∇ϕn

E + E) · ∇ψ dx−
∫

ω
(C∞(A, x)E) · ∇ψ dx = 0, (52)
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for all ψ in H1
0 (ω). In the sequel a generic open subset of Ω is denoted by ω. The measure

of ω is denoted by |ω| and standard apriori estimates using Cauchy’s inequality in (52) give∫
ω
|∇ϕn

E|2 dx ≤
(
4Λ2/λ2

)
|ω||E|2, (53)

and ∫
ω
|∇ϕn

E + E|2 dx ≤
(
4Λ2/λ2 + 1

)
|ω||E|2. (54)

We now list the convergence properties for the sequence of corrector functions.

Lemma 2.1 The sequence {ϕn
E}∞n=1 converges weakly to zero in H1

0 (ω) thus

∇ϕn
E ⇀ 0, weakly in L2(ω)N , (55)

and
Cn(A, x)(∇ϕn

E + E) ⇀ C∞(A, x)E, weakly in L2(ω)N . (56)

The proof is standard see (Ref. 10).
For δβ andM such thatA+δβM lies inN (A) consider the sequence {Cn(A+δβM, x)}∞n=1.

Here M is taken to be an array of dielectric tensors that are identically zero except for

the ith component dielectric tensor Mi. Here |Mi| =
√∑

k,l[Mi]2kl. The sequence of coef-

ficients {Cn(A + δβM, x)}∞n=1 differs from {Cn(A, x)}∞n=1 by the increment δβMiχ
n
i . The

G limit for the sequence {Cn(A + δβM, x)}∞n=1 is written as C∞(A + δβM, x). We set
δC = C∞(A+ δβM, x)−C∞(A, x, ) and examine the dependence of δC with respect to δβ.

The first step is to examine the dependence of (1/|ω|)
∫
ω δC E · E dx with respect to

the increment δβ. The correctors associated with the sequence {Cn((A + δβM, x)}∞n=1 are
denoted by ϕ̂n

E + E · x where ϕ̂n
E are the H1

0 (ω) solutions of∫
ω
Cn((A+ δβM, x)(∇ϕ̂n

E + E) · ∇ψ dx−
∫

ω
(C∞(A+ δβM, x)E) · ∇ψ dx = 0, (57)

for all ψ in H1
0 (ω) and

Cn(A+ δβM, x)(∇ϕ̂n
E + E) ⇀ C∞(A+ δβM, x)E, weakly in L2(ω)N , (58)

∇ϕ̂n
E ⇀ 0, weakly in L2(ω)N . (59)

For any choice of p(x) in C∞(ω) it follows from (56) and (58) that

(1/|ω|)
∫

ω
p(x)δC E · E dx (60)

= lim
n→∞

(1/|ω|)
∫

ω
p(x) (Cn(A+ δβM, x)(∇ϕ̂n

E + E)− Cn(A, x)(∇ϕn
E + E)) · E dx.

Writing Cn(A+ δβM, x) = Cn(A, x) + δβMiχ
n
i and ϕ̂n

E = ϕn
E + δϕn, where δϕn = ϕ̂n

E − ϕn
E

and substitution into (60) gives

(1/|ω|)
∫

ω
p δC E · E dx (61)

= lim
n→∞

(1/|ω|)
∫

ω
p δβMiχ

n
i (∇ϕn

E + E) · E + p δβMiχ
n
i ∇δϕn · E + pCn(A, x)∇δϕn · E dx.
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To proceed further we subtract (52) from (57) to obtain for every ψ in H1
0 (ω) the equation

0 =
∫

ω
δβMiχ

n
i (∇ϕn

E + E) · ∇ψ dx +
∫

ω
Cn(A, x)∇δϕn · ∇ψ dx

+
∫

ω
δβMiχ

n
i ∇δϕn · ∇ψ dx −

∫
ω
δCE · ∇ψ dx. (62)

Choosing ψ = (pϕn
E) in (62) substitution into (61) and taking limits gives

(1/|ω|)
∫

ω
p δC E · E dx

= δβ lim
n→∞

(
(1/|ω|)

∫
ω
pMiχ

n
i (∇ϕn

E + E) · (∇ϕn
E + E) dx

+ (1/|ω|)
∫

ω
pMiχ

n
i (∇ϕn

E + E) · ∇δϕn dx
)
. (63)

Writing

S = lim sup
n→∞

(1/|ω|)
∫

ω
p δβMiχ

n
i (∇ϕn

E + E) · ∇δϕn dx

and

S = lim inf
n→∞

(1/|ω|)
∫

ω
p δβMiχ

n
i (∇ϕn

E + E) · ∇δϕn dx, (64)

standard apriori estimates are used to obtain

|S| ≤ ‖p‖∞K|E|2
√
|δβ| and |S| ≤ ‖p‖∞K|E|2

√
|δβ|, (65)

where K is a constant independent of δβ and choice of ω ⊂ Ω and ‖p‖∞ is the maximum
value of p on ω. We establish the following

Lemma 2.2 For every ω ⊂ Ω and function p in C∞(ω), the limit

lim
n→∞

(
(1/|ω|)

∫
ω
pMiχ

n
i (∇ϕn

E + E) · (∇ϕn
E + E) dx

)
(66)

exists and

(1/|ω|)
∫

ω
p δCE · E dx

= δβ lim
n→∞

(
(1/|ω|)

∫
ω
pMiχ

n
i (∇ϕn

E + E) · (∇ϕn
E + E) dx

)
+ δβR(δβ, ω, p), (67)

where
|R(δβ, ω, p)| ≤ ‖p‖∞K|E|2

√
|δβ|. (68)

Proof. We put

Hn =
(
(1/|ω|)

∫
ω
pMiχ

n
i (∇ϕn

E + E) · (∇ϕn
E + E) dx

)
and

Rn =
(
(1/|ω|)

∫
ω
pMiχ

n
i (∇ϕn

E + E) · ∇δϕn dx
)

(69)
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and from (54) we see that H = lim supn→∞Hn and H = lim infn→∞Hn are finite. Passing
to subsequences as necessary we deduce that

(1/|ω|)
∫

ω
p δCE · E dx = δβH + δβR(δβ, ω, p), (70)

where for each δβ, R(δβ, ω, p) is a cluster point of the sequence {Rn}∞n=1 and from (65) it is

evident that R(δβ, ω, p) ≤ ‖p‖∞K|E|2
√
|δβ|. Similar considerations give

(1/|ω|)
∫

ω
p δCE · E dx = δβH + δβR(δβ, ω, p), (71)

whereR(δβ, ω, p) is a cluster point of the sequence {Rn}∞n=1 andR(δβ, ω, p) ≤ ‖p‖∞K|E|2
√
|δβ|.

It is evident from (70) and (71) thatH = H. From this we deduceR(δβ, ω, p) = R(δβ, ω, p)
∆
=

R(δβ, ω, p) and the Lemma is established.

2

With Lemma 2.2 in hand we establish Theorem 1.1. We consider subsets ω of Ω given
by cubes Q(x, r) and the associated local corrector functions are denoted by ϕn,r

E . We put

H(x, r) = lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
Miχ

n
i (∇ϕn,r

E + E) · (∇ϕn,r
E + E) dy. (72)

and we introduce the functions f(x) and f(x) defined everywhere in Ω by

f(x)
∆
= lim sup

r→0
H(x, r) (73)

and
f(x)

∆
= lim inf

r→0
H(x, r) (74)

The estimate (54) shows that these functions are bounded on Ω. Given the increment δβ we
consider the intersection of Lebesgue points of C∞(A, x) and C∞(A + δβM, x). We choose
p = 1 and from Lemma 2.2 we have the following identity

δC E · E = lim
r→0

(1/|Q(x, r)|)
∫

Q(x,r)
δC E · E dy

= δβ lim
r→0

( H(x, r) + R(δβ,Q(x, r), 1) ) , (75)

almost everywhere on Ω and for any E in Rm. Passing to subsequences as necessary one has

δC E · E = δβ
(
f(x) + R(δβ, x)

)
, a.e. on Ω, (76)

where R(δβ, x) is a cluster point of the sequence {R(δβ,Q(x, r), 1)}r>0 and |R(δβ, x)| ≤
K|E|2|

√
|δβ|. A similar consideration shows that

δC E · E = δβ
(
f(x) + R(δβ, x)

)
, a.e. on Ω, (77)
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where R(δβ, x) is a cluster point of the sequence {R(δβ,B(x, r), 1)}r>0 and |R(δβ, x)| ≤
K|E|2

√
|δβ|. We subtract (77) from (76) to obtain

f(x)− f(x) = R(δβ, x)−R(δβ, x), a.e.on Ω, (78)

to see that
|f(x)− f(x)| < 2K |E|2

√
|δβ|, a.e. on Ω. (79)

Since f(x) and f(x) are independent of the increment δβ we deduce that

lim
r→0

lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
Miχ

n
i (∇ϕn,r

E + E) · (∇ϕn,r
E + E) dy (80)

exists almost everywhere on Ω. In this way it is seen that R(δβ, x) = R(δβ, x)
∆
= R(δβ, x)

and

δC E ·E = δβ lim
r→0

lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
Miχ

n
i (∇ϕn,r

E +E) · (∇ϕn,r
E +E) dy + δβ R(δβ, x),

(81)

a.e. on Ω, where R(δβ, x) < K |E|2
√
|δβ|. It is evident from (81) that ∂C∞

∂Mi
E · E exists and

is given by

∂C∞

∂Mi

E · E = lim
r→0

lim
n→∞

(1/|Q(x, r)|)
∫

Q(x,r)
Miχ

n
i (∇ϕn,r

E + E) · (∇ϕn,r
E + E) dy (82)

and Theorem 1.1 follows.
Collecting results, we substitute (81) into (67) of Lemma 2.3 to obtain the local homog-

enization theorem.

Theorem 2.1 Local Homogenization Theorem. Under the hypotheses of Theorem 1.1,
given any ω ⊂ Ω and p in C∞(ω) the sequence of local correctors, {ϕn

E + E · x}∞n=1 de-
fined by (51) satisfy

lim
n→∞

(1/|ω|)
∫

ω
pMiχ

n
i (∇ϕn

E + E) · (∇ϕn
E + E) dx = (1/|ω|)

∫
ω
p
∂C∞

∂Mi

E · E dx. (83)

For future reference it is noted that the estimate (54) gives the bound

σ(x)E · E ≤ (4Λ2/λ2)|E|2, (84)

almost everywhere in Ω for E in Rm.

3 Homogenization of Products of Weakly Converging

Sequences of Gradients

In this Section Theorem 1.1 and Theorem 2.1 are applied together with a localization argu-
ment to establish Theorem 1.2. Recall that the sequences of solutions of (15) denoted by

13



{φn}∞n=1 converge weakly to the solution φ∞ of (16) and the associated sequence of coefficient
matrices {Cn(P , x)}∞n=1 G converge to C∞(P , x) for every P in N (A).

The first step in the proof is to approximate φ∞ by piecewise affine functions. Given
ε > 0 there exists a function wε in H1

0 (Ω) which is piecewise affine on Ω and∫
Ω
|∇wε −∇φ∞|2 dx < ε2, (85)

see for example (Ref. 18). The gradient of wε is constant on the open sets ωi
ε and Ω = ∪κ(ε)

i=1ω
i
ε.

In each open set ωi
ε, one has wε = Ei · x+ ci, where Ei is a constant vector in Rm and ci is

a constant.
The global corrector {φn,ε}∞n=1 is introduced. The right-hand side f ε = −div (C∞(A, x)∇wε),

is chosen and φn,ε is defined to be the H1
0 (Ω) solution of

−div (Cn(A, x)∇φn,ε) = f ε. (86)

One easily obtains the following convergence properties given by

Lemma 3.1 For ε fixed,

φn,ε ⇀ wε, as n→∞ in H1
0 (Ω) and Cn(A, x)∇φn,ε ⇀ C∞(A, x)∇wε in L2(Ω)m. (87)

The error between the weakly converging sequences {φn}∞n=1 and the sequence of global
correctors {φn,ε}∞n=1 can be controlled uniformly with respect to n. This is made precise in
the following Lemma.

Lemma 3.2 There exists a constant C0 independent of n and ε such that∫
Ω
|∇φn −∇φn,ε|2 dx ≤ C2

0 (Λ/λ)2 ε2, for all n > 0. (88)

Proof. We start by showing ‖f ε − f‖H−1(Ω) ≤ εΛ. Given ψ in H1
0 (Ω) we have

| <H−1 (f ε − f), ψ >H1
0
| = |

∫
Ω
C∞(A, x) (∇wε −∇φ) · ∇ψ dx|

≤ Λ
∫
Ω
|∇wε −∇φ||∇ψ|, dx

≤ εΛ‖ψ‖H1
0 (Ω), (89)

and the claim follows. Next one has the estimate given by

λ
∫
Ω
|∇φn −∇φn,ε|2 dx ≤

∫
Ω
Cn(A, x)(∇φn −∇φn,ε) · (∇φn −∇φn,ε) dx

≤ ‖f ε − f‖H−1 C0

√∫
Ω
|∇φn −∇φn,ε|2 dx (90)

where C0 depends only on Ω and m and comes from the Poincare Friedrichs inequality. The
inequality (88) follows noting that ‖f ε − f‖H−1 ≤ Λε.

2
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Collecting results we write φ = wε + rε, φn = φn,ε + zn,ε. Here rε and zn,ε are in H1
0 (Ω)

and satisfy ∫
Ω
|∇rε|2 dx < ε2 and

∫
Ω
|∇zn,ε|2 dx < ε2, for all n > 0. (91)

Given p(x) in C∞(Ω), one observes that 1 =
∑N

j=1 χ
n
j (x) and writes∫

Ω
p |∇φn|2 dx

=
∫
Ω
p (

N∑
j=1

χn
j (x))|∇(φn,ε + zn,ε|2) dx

=
κ(ε)∑
i=1

N∑
j=1

∫
ωi

ε

p χn
j |∇φn,ε|2 dx + O(ε). (92)

The lemma that gives the connection between global and local correctors is provided by
the following localization lemma.

Lemma 3.3 Localization Lemma. Let ϕi,n,ε
Ei be the H1

0 (ωi
ε) solution of

−div (Cn(A, x))(∇ϕi,n,ε
Ei + Ei)) = −div (C∞(A, x)Ei), (93)

then
lim

n→∞

∫
ωi

ε

|∇ϕi,n,ε
Ei + Ei −∇φn,ε|2 dx = 0. (94)

Proof. From the properties of the local corrector introduced in Section 2 one has

ϕi,n,ε
Ei ⇀ 0, weakly in H1

0 (ωi
ε) and Cn(A, x)(∇ϕi,n,ε

Ei +Ei) ⇀ C∞(A, x)Ei, weakly in L2(ωi
ε)

m.
(95)

The properties of the global corrector φn,ε imply that it is a solution of

−div (Cn(A, x)∇φn,ε) = −div (C∞(A, x)Ei), on ωi
ε, (96)

i.e., for all ψ in H1
0 (ωi

ε)∫
ωi

ε

Cn(A, x)∇φn,ε · ∇ψ dx =
∫

ωi
ε

C∞(A, x)Ei · ∇ψ dx, (97)

and

φn,ε ⇀ wε = Ei · x+ ci, weakly in H1(ωi
ε),

Cn(A, x)∇φn,ε ⇀ C∞(A, x)Ei, weakly in L2(ωi
ε)

m. (98)

The Lemma now follows immediately from Remark 1 of Section 10 in (Ref. 10).

2
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The local homogenization Theorem 2.1 and the localization Lemma 3.3 are applied and
we work up from small to intermediate scales to find that

κ(ε)∑
i=1

∫
ωi

ε

p (σ(x) + I)Ei · Ei dx =
κ(ε)∑
i=1

N∑
j=1

∫
ωi

ε

p∇j
kkC

∞(A, (x))Ei · Ei dx

=
κ(ε)∑
i=1

N∑
i=j

lim
n→∞

∫
ωi

ε

p χn
j |∇ϕ

i,n,ε
Ei + Ei|2 dx

= lim
n→∞

κ(ε)∑
i=1

N∑
j=1

∫
ωi

ε

p χn
j |∇φn,ε|2 dx. (99)

Proceeding from large scales down to intermediate scales we see that

lim
n→∞

∫
Ω
p|∇φn|2 dx = lim

n→∞

κ(ε)∑
i=1

∫
ωi

ε

p |∇φn,ε|2 dx + O(ε)

=
κ(ε)∑
i=1

∫
ωi

ε

p (σ(x) + I)Ei · Ei dx + O(ε)

=
∫
Ω
p (σ(x) + I)∇wε · ∇wε dx + O(ε). (100)

Since ε is arbitrary and recalling (84) we obtain the desired result given by

lim
n→∞

∫
Ω
p|∇φn|2 dx =

∫
Ω
p (σ(x) + I)∇φ∞ · ∇φ∞ dx, (101)

and Theorem 1.2 follows.

4 Relaxation

In this section the properties of the relaxed problem (38) given by Theorems 1.5 and 1.6 are
established. The proofs of Theorems 1.3 and 1.4 follow identical lines. In establishing the
properties of relaxed problem the following compactness result will be used.

Theorem 4.1 Compactness Property. Given any sequence {Cn(P , x)}∞n=1 in C(A, γ), there

exists a subsequence {Cn′(P , x)}∞n′=1 and a function C∞(P , x) in GC(A, γ) such that Cn′(P , x)
G converges to C∞(P , x) for all P in N (A).

This property follows immediately from (Ref. 13).
A special sequence of controls {Cn(P , x)}∞n=1 in C(A, γ) is constructed. This sequence will

be used to establish Theorems 1.5 and 1.6. To construct this sequence consider a minimizing
sequence {C∞,n(P , x)}∞n=1 for QR. The associated set of electric potentials for the sequence
{C∞,n(A, x)}∞n=1 is denoted by {φn}∞n=1 and QR = limn→∞ F (φn).

For each n there exists a sequence of controls {Cn,k(P , x)}∞k=1 in C(A, γ) such that
Cn,k(P , x), G converges to C∞,n(P , x) for every P in N (A). The associated potentials
φn,k in H1

0 (Ω) satisfy the state equation

−div (Cn,k(A, x)∇φn,k) = f, (102)

16



and for every nonnegative p in C∞(Ω) the homogenization theorem 1.2 gives

lim
k→∞

∫
Ω
p(x)|∇φn,k|2 dx =

∫
Ω
p(x)(σn(x) + I)∇φn · ∇φn dx ≤ K2

∫
Ω
p(x) dx, (103)

where the covariance matrix σn(x) is

σn(x)E · E =
N∑

i=1

(∇i
kkC

∞,n(A, x))E · E − |E|2, (104)

for all vectors E in Rm. A countable dense subset {p`}∞`=1 of the set of nonnegative functions
in C∞(Ω) is introduced. Given n put Sn = {p`}n

`=1 then there exists an index kn for which∫
Ω
p` |∇φn,kn|2 dx ≤ K2

∫
Ω
p` (1 + 1/n) dx, for every p` in Sn (105)

|F (φn,kn)− F (φn)| < 1/n, (106)

and
−div (Cn,kn(A, x)∇φn,kn) = f. (107)

Passing to a subsequence if necessary and appealing to the compactness property there exists
a function C̃∞(P , x) in GC(A, γ) for which

{Cn,kn(P , x)}∞n=1,G converges to C̃∞(P , x) (108)

for all P in N (A).

Definition 4.1 The sequence {(Cn,kn(P , x)}∞n=1 constructed above satisfying (105– 108) is
called a configuration minimizing sequence.

The potential associated with the control C̃∞(P , x) is denoted by φ̃ and

−div (C̃∞(A, x)∇φ̃) = f. (109)

We proceed to establish Theorem 1.5. For each p` in {p`}∞`=1 it follows that∫
Ω
p`(x)(σ̃(x) + I)∇φ̃ · ∇φ̃ dx = lim

n→∞

∫
Ω
p` |∇φn,kn|2 dx

≤ K2
∫
Ω
p` dx (110)

where

σ̃(x)E · E =
N∑

i=1

(∇i
kkC̃

∞(A, x))E · E − |E|2 (111)

for every E in Rm. Thus by density, for any nonnegative p in C∞(Ω) one has∫
Ω
p(x)(σ̃(x) + I)∇φ̃ · ∇φ̃ dx ≤ K2

∫
Ω
p(x) dx (112)
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and C̃∞(P , x) is an admissible control for QR. It is evident from the continuity of the
objective function and (106) that F (φ̃) = QR and Theorem 1.5 follows.

To prove Theorem 1.6 one considers the design problems P̃j given by (45) and starts by
showing P̃j ≤ QR. For the configuration minimizing sequence {(Cn,kn(P , x)}∞n=1 of Definition
4.1 it is evident that given the index j one has that for all n > j, that Cn,kn(P , x) is admissable
for P̃j, and P̃j ≤ F (φn,kn). Sending n to infinity shows that P̃j ≤ QR. Noting that P̃j is
monotone increasing with j and bounded above implies the existence of limj→∞ P̃j. Next it
is shown that QR = limj→∞ P̃j. Given j > 0 one can choose a design denoted by Cj(P , x)
with associated electric potential φj in H1

0 (Ω) for which∫
Ω
pk(x)|∇φj|2 dx ≤ K2

∫
Ω
pk(x)(1 + 1/j) dx, for pk in Sj (113)

and
−div (Cj(A, x)∇φj) = f. (114)

Where
P̃j ≤ F (φj) ≤ P̃j + 1/j. (115)

From the compactness property and passage to subsequences if necessary there exists a
function C

∞
(P , x) in GC(A, γ) such that Cj(P , x) G converges to C

∞
(P , x) for for all P in

N (A). The associated potential φ in H1
0 (Ω) solves

−div (C
∞

(A, x)∇φ) = f. (116)

Here limj→∞ F (φj) = F (φ) and arguing as above the associated covariance σ satisfies∫
Ω
p(x)(σ(x) + I)∇φ · ∇φ dx ≤ K2

∫
Ω
p(x) dx, (117)

for every p in C∞(Ω). Thus C
∞

(P , x) is an admissible design for QR. Observing that
QR ≤ F (φ) = limj→∞ F (φj) and (115) gives the set of inequalities

QR ≤ lim
j→∞

F (φj) ≤ lim
j→∞

P̃j ≤ QR (118)

and one concludes that QR = limj→∞ P̃j. Lastly (49) is established. Consider the config-
uration minimizing sequence {(Cn,kn(P , x)}∞n=1. It is evident that the control Cj,kj(P , x) is
admissible for P̃j thus

Pj ≤ F (φj,kj). (119)

The upper inequality in (49) follows recalling that limj→∞ F (φj,kj) = QR where φj,kj is the
state variable associated with Cj,kj(A, x) and on noting that limj→∞ P̃j = QR.

5 Conclusions

The results given here are intended to provide the underpinnings for numerical methods
for the design of multi-phase composites for optimal performance subject to constraints on
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the gradient of the state variable. Future work will apply the theory developed here to the
numerical design of functionally graded materials.

It should be pointed out that for the case of two phase mixtures with one component
having a nonzero dielectric constant and the other being zero, the comprehensive theory
developed in (Ref. 19) provides a relaxed formulation for the design problem when the
constraint is given in terms of the L2 norm of the gradient. Here the fact that one of the
dielectrics is zero delivers an optimal design problem of self adjoint type. However when
both dielectric constants are nonzero the problem becomes non self adjoint and a design
problem of the kind treated here is recovered.

Recently problems involving design criteria given directly in terms of the L2 norm of the
gradient have been addressed (Refs. 20-25). Here the objective is to force the gradient to
be as close as possible to a target field in the L2 norm. This problem is one of minimizing
the “mean-square deviation of the gradient of the state.” Gradient based methods for the
numerical identification of minimizing sequences of configurations are given in (Ref. 20),
while the full relaxation for the problem has recently been found in (Ref. 21). In (Ref. 22) a
philosophy similar to (Ref. 19) is adopted and the new concept of constrained quaziconvex
envelope is introduced. The constrained quaziconvex envelope is computed explicitly in
(Ref. 23) for this problem. The approaches taken in (Ref. 21) and Ref. 23) are very
different however both show that the only minimizing sequences for the the mean-square
deviation of the gradient of the state are the well known rank one layered microstructures.
The earlier work given in (Ref. 24) indicates the existence of a dense class of targets for
which relaxation is accomplished through computation of the strong L2 closure of the set
of controls. The explicit representation of this set is given in (Ref. 24). That analysis also
shows that minimizing sequences are given by rank one microstructures. For the case of N
anisotropic conductors the strong L2 closure is characterized in (Ref. 25).
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