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Abstract

This paper explores the recurrence and transience properties of nearest neighbor random walks on integer
lattices, with a focus on Z2 and higher dimensions. We begin with foundational concepts in probability
theory and Markov processes while deriving key results for random walks on Z, such as passing times
and time of first return. We then extend the study to Zd, where we establish recurrence criteria and
demonstrate the transition between recurrence in Z2 and transience in Z3 and beyond. Through ana-
lytical techniques such as the reflection principle and functional equations, this paper will highlight the
dimensional dependence of random walk behavior.
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2 WHAT’S A RANDOM WALK?

1 Introduction

Imagine a drunk mathematician stumbling home from a bar. Each step they take is random—moving left
or right with equal probability. Will they eventually return to the bar, or wander off forever? This is a
key question in the random walk problem.

When we extend this idea to higher dimensions, such as a city grid (Z2) or a 3D lattice (Z3), the
drunkard’s fate changes dramatically based on the dimension. In 1D and 2D, the mathematician will
always return to the starting point eventually, whereas in 3D and higher, there is a non-zero probability
they will never return. We call these phenomenons recurrence and transience, respectively. Even before
and after this threshold, we see huge differences in the drunkard’s behavior based on dimension! In 1D vs.
2D, while both dimensions guarantee eventual return, the expected time it will take to return differs. In
1D, returns happen relatively quickly, whereas in 2D, the wait is much, much longer (though still certain).
The jump from 2D to 3D marks a sharp transition—guaranteed return vs. possible escape.

(a) 1D - Narrow Valley
Recurrence: Certain

(b) 2D - City Grid
Recurrence: Eventually

x

y

z

(c) 3D - Open Space
Recurrence: Never

Figure 1: Illustration of random walk recurrence properties in different dimensions. In one dimension (a),
the walker must return to the origin. In two dimensions (b), the walker will eventually return. In three
dimensions (c), the walker will almost surely become permanently lost.

We now explore why dimension creates such a threshold.

2 What’s a Random Walk?

2.1 The Drunkard’s Step: Bernoulli Foundations

When we think of the word “walk,” we think of steps. In the case of the random walk, we’re talking about
either taking a step in one direction or another, with some probability. We will make this more rigorous
later, but first, we need to talk about these “steps.”

Definition 1. A Bernoulli random variable is a random variable that takes two values.

We can think of many examples of Bernoulli random variables. A coin flip that takes values either
“heads” or “tails” is a Bernoulli random variable, or a switch that has two choices, “on” or “off,” is
also a Bernoulli random variable. But in the case of our walk, the two values are our step “forward”
or “backward,” which we describe as “1” or “−1.” When we talk about these variables, we usually are
referring to independent and identically distributed (“i.i.d.”) random variables.

Remark 1. The notation P(X | Y ) means “The probability of X happening, given that Y has happened.”
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2.2 Nearest Neighbor Random Walks 2 WHAT’S A RANDOM WALK?

Definition 2. Two random variables X and Y are said to be independent if P(X | Y ) = P(X), and
P(Y | X) = P(Y ).

In the terms of our random walk, we’re saying that at the fourth step we take, the probability we step
forward is exactly the same as it was when we took our very first step. No matter how many steps we’ve
taken, we always have the same probability of moving in a particular direction.

Definition 3. Two random variables X and Y are identically distributed if P(X ≤ x) = P(Y ≤ x).

In our case, this just means that the odds of stepping forward is the same at any step.

2.2 Nearest Neighbor Random Walks

2.2.1 An Elementary Probability Theory Definition

We can now rigorously define our random walks in one dimension. Let {Bn | n ∈ Z+} be a sequence of
i.i.d. Bernoulli random variables taking values in {−1, 1}, with

P (Bn = 1) = p and P (Bn = −1) = q = 1− p, (1)

for some p ∈ (0, 1). Bn is the “step” taken at time n: one step to the right (if it’s 1), or one step to the left
(if it’s -1). This is the ”step” we discussed in our preliminaries! Now, fix a sequence E = (ϵ1, ϵ2, . . . , ϵn) ∈
{−1, 1}n. The probability of taking exactly this sequence of steps is given by:

P (B1 = ϵ1, . . . , Bn = ϵn) = pN(E)qn−N(E), (2)

where N(E) is the number of steps to the right in the sequence:

N(E) := |{m | ϵm = 1}| =
n+

∑n
m=1 ϵm
2

. (3)

This formula captures the likelihood of any specific walk path based on how many steps move right versus
left. Then we accumulate the total displacement from the origin:

X0 = 0, and for n ≥ 1, Xn =
n∑

m=1

Bm. (4)

Definition 4. The collection {Xn | n ∈ Z} is called a nearest neighbor random walk on Z.

We can translate this definition into the intuition we developed earlier—we’re essentially collecting
steps, either right or left, as we see in equation (4). However, this definition relies mainly on fundamental
probability theory, but this process is a very dynamic one that could be modeled in a more Markovian
way.

2.2.2 A Definition Rooted in Markov Processes

Definition 5. The Markov property, or “lack of memory property,” is the property such that

P(Xn+1 | Xn, Xn−1 . . . ) = P(Xn+1 | Xn) (5)
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2.3 Passage Times 2 WHAT’S A RANDOM WALK?

We can see that our process we defined in Definition 4 is a Markovian process—at a given step n, the
probability we step forward or backward is the same no matter what time n we are at. Therefore, we
could replace equation (4) with the following:

P(X0 = 0) = 1, and P(Xn −Xn−1 = ϵ | X0, . . . , Xn−1) =

{
p if ϵ = 1

q if ϵ = −1
(6)

Note that this way of defining our random walk captures the dynamicity of the process, since we are
saying that we start at 0 from time n = 0 and proceeding either a step forward with probability p or a
step backward with probability q.

2.3 Passage Times

To discuss recurrence, we need more information about our process. To find out when or if our process
will return to 0, we first need to develop a tool to tell us when our process first passes a certain point.

Definition 6. The first passage time to a point a ∈ Z, ζa, is given by

ζa = inf{n ≥ 1 | Xn = a} (7)

where ζa = ∞ if Xn ̸= a for any n ≥ 1.

Equivalently, note that what we’re truly looking for is an expression to calculate P(ζa = n), or the
probability that we pass a at time n. We can derive a way to find this in two methods, one based on
section 2.2.1, and one based in section 2.2.2.

2.3.1 via Reflection Principle

To find the first passage time based on the probabilistic definition of the random walk, let a ∈ Z+, and
suppose n ∈ Z+ has the same parity as a.a Now observe that

P(ζa = n) = P(Xn = a and ζa > n− 1) = pP(ζa > n− 1 and Xn−1 = a− 1)(*). (8)

Hence, if we compute (*), we have computed P(ζ1 = n). To this end, note that for any E ∈ {−1, 1}n−1

with Xn−1 = a− 1, there exists a bijection between paths that stay strictly above a and those that stay
strictly below a up to time n− 1. The reflection principle allows us to relate these probabilities through
symmetry. For a > 0, we have:

P(ζa ≤ n) = 2P(Xn ≥ a)− P(Xn = a). (9)

This follows by considering that for every path reaching a at time k ≤ n and ending above a, there’s a
corresponding reflected path ending below a. The correction term accounts for paths ending exactly at
a. For the special case a = 1, we can derive an exact probability:

P(ζ1 = 2m− 1) =
1

2m− 1

(
2m− 1

m

)
2−(2m−1). (10)

The asymptotic behavior follows from Stirling’s approximation:

P(ζ1 = n) ∼ 1√
2π

n−3/2 as n → ∞. (11)

This n−3/2 decay is characteristic of first passage times in one-dimensional random walks and explains
why the expected return time to the origin is infinite despite the walk being recurrent.

aXn is always odd if n is odd, and similiarly if n is even.
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2.3 Passage Times 2 WHAT’S A RANDOM WALK?

2.3.2 An Important Theorem

Theorem 1 (Probability of Ever Hitting Level a). For a random walk with step probabilities p, q (p+q =
1), the probability of eventually hitting level a ∈ Z− {0} is:

P(ζa < ∞) =

1 if a ∈ Z+ and p ≥ q, or − a ∈ Z+ and p ≤ q,(
p
q

)|a|
otherwise.

Proof. Base Case: For a = 1, the generating function yields:

E[sζ1 ] =
1−

√
1− 4pqs2

2qs
=⇒ P(ζ1 < ∞) = min

(
1,

p

q

)
. (12)

For a > 0, by the strong Markov property:

P(ζa+1 < ∞) = P(ζ1 < ∞) · P(ζa < ∞).

Induction gives P(ζa < ∞) = P(ζ1 < ∞)a. The a < 0 case follows by symmetry (swap p and q).
Substituting P(ζ1 < ∞) = min(1, p/q) yields the result. ,

2.3.3 via Functional Equations

There has to be a better way! We continue our discussion of passage times with a less computational
derivation- the reflection principle gives us a geometric insights, but to truly understand what is happening,
we need generating functions. Our goal is now to derive the distribution of ζa in a single expression in a
series of recursive relations.
For a ∈ Z− {0} and s ∈ (−1, 1), define the generating function:

ua(s) = E[sζa ]. (13)

We first make an observation: reaching a + 1 requires that we reach a, and then, independently of the
past, make an additional step of 1. Given a ∈ Z+, we apply the strong Markov propertyb to obtain the
recursive relation:

ua+1(s) =
∞∑

m=1

smE
[
sζ1◦Σ

m
, ζa = m

]
= ua(s)u1(s). (14)

We note that this propagates upwards through the integers. For negative values, we note a symmetrical
structure:

ua−1(s) = ua(s)u−1(s). (15)

These relations yield the general form:

ua(s) = usgn(a)(s)
|a| for a ∈ Z− {0}. (16)

So now the problem reduces itself to solving for u1(s). We can condition our first step (X1):

u1(s) = E[sζ1 , X1 = 1] + E[sζ1 , X1 = −1] = ps+ qsu1(s)
2. (17)

bThe strong Markov property differs from the Markov property only in that the strong Markov property holds at any
stopping time.
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2.4 Time of First Return 2 WHAT’S A RANDOM WALK?

where the term ui(s)
2 emerges from the two possible states after the initial step. But how do we choose

which root to use?
Since u1(s) is a probability generating function, it must satisfy u1(1

−) = 1 and also remain bounded
for |s| < 1. Thus, our hand is forced by

√
1− 4pqs2 from equation (12):

u1(s) =
1−

√
1− 4pqs2

2qs
(choosing the root with u1(s) ≤ 1). (18)

Combining these results, we obtain the closed-form expression for all a ̸= 0:

E[sζa ] =


(

1−
√

1−4pqs2

2qs

)a

if a ∈ Z+(
1−
√

1−4pqs2

2ps

)−a

if − a ∈ Z+

for |s| < 1, (19)

which is our universal formula for passage times to any a ̸= 0.

2.4 Time of First Return

Now we ask our key question: when will our random walk come back? The time of first return, ρ0, tells
us whether the walker will come back, and if so, how long will it take?

2.4.1 The Fate of the Wanderer

When a walker stands at the origin of Z, taking steps to the right with probability p and to the left with
probability q = 1− p, the question of recurrence, whether the walker is fated to return, is dependent on
the balance between p and q. We learn that the probability of eventual return is

P(ρ0 < ∞) = 2(p ∧ q)c (20)

This result reveals that the walker is certain to return only in the symmetric case, where p = q = 1
2 .

2.4.2 The Paradox of the Symmetric Walk

When the walk is symmetric, we have shown that our walker will come back, but there’s a twist! The
expected time to return, E[ρ0], is infinite. This is an interesting result- the walker will always return, but
on average, we’d have to wait forever to see it happen. The generating function

E[sρ0 ] = 1−
√

1− 4pqs2 for |s| < 1 (21)

shows us this delicate balance, as it approaches 1 ((has 100% probability) as s → 1.

2.4.3 The Non-Symmetric Case: A Swift (or Eternal!) Farewell

For biased walks (p ̸= q), the story is much different. With probability 1−2(p∧ q), the walker drifts away
forever. But if they do return, they do so relatively quickly. Equation (22) quantifies this:

E[ρ0 | ρ0 < ∞] =
2p ∨ q

|p− q|
= 1 +

1

|p− q|
(22)

Here, the expected return time grows as the bias |p − q| shrinks, reflecting the increasing difficulty of
returning when the walk is almost symmetric.

cp ∧ q denotes a minimum, and p ∨ q denotes a maximum.
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3 RECURRENCE PROPERTIES OF THE RANDOM WALK

2.4.4 A Lesson in Persistence and Impatience

The picture painted by these results is clear. Symmetry ensures return but demands infinite patience.
Asymmetry offers a quicker resolution, which is either a swift return or a permanent departure.

3 Recurrence Properties of the Random Walk

3.1 Extending the Random Walk to Zd: We Have d Different Walkers!

To generalize nearest neighbor random walks to Zd, we first identify the set of nearest neighbors of the
origin in Zd as the 2d points where (d− 1) coordinates are 0 and the remaining coordinate is in {−1, 1}.
We then consider independent, identically distributed Nd-valued random variables B1, B2, . . .,

d where Nd

is the set of nearest neighbors in Zd. More directly– we have a choice of any of the nearest neighbors. In
two dimensions, our nearest neighbors to the origin are (1, 0), (−1, 0), (0, 1), and (0,−1). In d dimensions,
this would be the 2d points where one coordinate is ±1 and the rest are 0. Figures 1 and 2 illustrate the
2d nearest neighbors for d = 2, 3:

x

y

(0, 0)

Figure 2: 2D Grid (4 Nearest Neighbors)

x

y

z

(0, 0, 0)

Figure 3: 3D Space (6 Nearest Neighbors)

dThe existence of Bn’s can be seen as a consequence: let {Un | n ∈ Z+} be a family of mutually independent random
variables which are uniformly distributed on [0,1), and let there be an F : [0, 1) → Nd (defined as necessary) and then set
Bn = F (Un). See [3] Chapter 6.
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3.2 Finally ... A Recurrence Criterion 3 RECURRENCE PROPERTIES OF THE RANDOM WALK

3.2 Finally ... A Recurrence Criterion

We now attempt to discover a rigorous criteriorn for whether or not a walk will return to its starting
point.

3.2.1 The Total Time at the Origin

Consider a random walk {Xn : n ≥ 0} starting at the origin (X0 = 0). Let T0 denote the total time the
walk spends at the origin:

T0 =

∞∑
n=0

1{0}(Xn). (23)

Since the walk begins at 0, T0 is at least 1. For n ≥ 1, the event {T0 > n} corresponds to the walk

returning to the origin at least n times. This connects T0 to the return times ρ
(n)
0 , defined as the time of

the n-th return to 0. Specifically,

T0 > n ⇐⇒ ρ
(n)
0 < ∞. (24)

Using this relationship, we derive the expected value of T0:

E[T0] =
∞∑
n=0

P(T0 > n) = 1 +
∞∑
n=1

P(ρ(n)0 < ∞). (25)

A key observation is that the probability of returning n times factors into the n-th power of the probability
of returning once:

P(ρ(n)0 < ∞) = P(ρ0 < ∞)n. (26)

This multiplicative property arises because each return time ρ
(n)
0 depends only on the steps after the

previous return, and these segments are independent. Substituting this into the expectation yields:

E[T0] = 1 +
∞∑
n=1

P(ρ0 < ∞)n =
1

1− P(ρ0 < ∞)
=

1

P(ρ0 = ∞)
. (27)

This formula tells us that the expected time spent at the origin is finite if and only if there is a positive
chance the walk never returns.

3.2.2 The Dichotomy

The behavior of T0 is interesting:

1. Finite Returns: If P(T0 < ∞) > 0, then E[T0] < ∞. This happens when P(ρ0 < ∞) < 1, meaning
the walk has a chance to escape forever.

2. Infinite Returns: If E[T0] = ∞, then P(T0 = ∞) = 1. Here, P(ρ0 < ∞) = 1, so the walk returns
infinitely often with certainty.

This dichotomy mirrors the broader classification of random walks as transient or recurrent.

Definition 7. A walk is transient if it escapes to infinity. More precisely, if E[T0] < ∞ (finite expected
visits).

Definition 8. A walk is recurrent if it revisits the origin infinitely often. More precisely, if E[T0] = ∞
(positive probability of infinite visits).
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4 IN Z2 VS. HIGHER DIMENSIONS

3.2.3 Implications and Applications

If the walk has a directional bias (e.g., E[B1] ̸= 0), the Strong Law of Large Numberse ensures |Xn| → ∞
almost surely. This forces P(ρ0 = ∞) > 0, so E[T0] < ∞—the walk is transient. For unbiased walks (e.g.,
simple symmetric random walk), the return probability P(ρ0 < ∞) often equals 1, leading to recurrence.

4 In Z2 vs. Higher Dimensions

4.1 Recurrence in Z2: Why Our Walker Always Comes Home

We have a surprising result in Z2: recurrence. This means that, no matter how far the walker strays, they
will always return to the origin infinitely often, with certainty. The one-dimensional case (Z) is intuitive,
but the two-dimensional result is not: how does the walker, with so many more directions to escape,
never truly get away? The answer lies in the delicate balance of symmetry and the slow decay of return
probabilities.

4.1.1 The Key to Recurrence Criterion in Z2

We begin by examining the connection between recurrence and return probabilities. For a random walk
{Xn} on Zd, let T0 count the number of times the walk visits the origin. Then:

E[T0] =
∞∑
n=0

P(Xn = 0). (28)

This is deceptively straightforward: the expected number of returns is just the sum of the probabilities
of being at the origin at each step. But combined with our recurrence criterion ({Xn} is recurrent if and
only if E[T0] = ∞), it becomes much more useful: the walk is recurrent precisely when this sum diverges.

4.1.2 Symmetry: The Origin is the Most Likely Place!

Let k ∈ Z2 and observe that:

P(X2n = k) ≤
∑
ℓ∈Zd

P(Xn = ℓ)2 = P(X2n = 0). (29)

The inequality arises from Schwarz’s inequalityf, but because of symmetry, we actually get equality:
P(Xn = ℓ) = P(Xn = −ℓ). This means the walker, no matter how far they roam, is always most likely to
be at the origin at even times.

4.1.3 The Decisive Estimate: Squeezing the Return Probability

The crux of the argument lies in bounding P(X2n = 0). For Z2, symmetry and the walk’s second-moment
properties yield:

P(X2n = 0) ≥ 1

8n+ 2
. (30)

e“A mathematical law that states that the average of the results obtained from a large number of independent random
samples converges to the true value, if it exists.” [1]

fsee [1]
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4.2 Transience In Z3 4 IN Z2 VS. HIGHER DIMENSIONS

This estimate comes from two observations:

1. The walk doesn’t spread too fast: Markov’s inequality shows P(|X2n| ≥ 2
√
n) ≤ 1

2 , so the walker
stays within 2

√
n of the origin half the time.

2. Counting lattice points: There are roughly 4n points within this range, and symmetry ensures the
origin’s probability dominates.

Summing these probabilities gives a harmonic series
∑

n
1
n , which diverges. Thus, E[T0] = ∞, and the

walk is recurrent.

4.2 Transience In Z3

4.2.1 Bounding Return Probabilities

Our goal is to prove that in dimensions d ≥ 3, the probability of returning to the origin after 2n steps
decays quickly enough that the total expected number of returns is finite. Mathematically, we want to
show:

∞∑
n=0

P(X2n = 0) < ∞. (31)

To do this, we need an upper bound on P(X2n = 0) that captures the correct decay rate.

4.2.2 A Key Idea: Coupling with Independent Walks

The challenge is that the coordinates of Xn (the random walk in Zd) are not independent—each step
changes only one coordinate. However, we can cleverly relate Xn to a collection of independent one-
dimensional random walks {Xi,n} using a random index selection process:

1. Auxiliary randomness: Introduce a sequence {In} of uniform random indices in {1, . . . , d}, indepen-
dent of everything else.

2. Counting coordinate updates: For each coordinate i, let Ni,n count how many times it has been
selected up to step n.

3. Constructing Yn: Define a new process Yn = (X1,N1,n , . . . , Xd,Nd,n
).

By construction, Yn has the same distribution as Xn, but it is now expressed in terms of independent
walks, each moving only when their coordinate is chosen.

4.2.3 Breaking Down the Probability

The probability P(X2n = 0) splits into two cases:

1. All coordinates are updated “enough” times: If each Ni,2n ≥ n
d , we can use known bounds for

independent walks.

2. Some coordinates are neglected: If any Ni,2n < n
d , we control this scenario using concentration

inequalities.

The dominant term comes from the first case, where we exploit the independence to get a decay like
n−d/2. The second case turns out to be negligible thanks to sharp tail bounds on the Ni,n.
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4.3 Beyond Z3...What Then? 4 IN Z2 VS. HIGHER DIMENSIONS

4.2.4 The Magic of Concentration Inequalities

The counts Ni,n are Binomial random variables with mean n
d . Using moment-generating functions and

Taylor expansions, we derive an exponential bound:

P
(
Ni,2n ≤ n

d

)
≤ e−2nR2

, (32)

which decays much faster than n−d/2. This ensures that the “neglected coordinates” scenario doesn’t ruin
our estimate. Combining, we prove:

P(X2n = 0) ≤ A(d)n−d/2, (33)

which is summable for d ≥ 3. Thus, the random walk is transient: it has a finite expected number of
returns to the origin, meaning it eventually escapes forever.

4.3 Beyond Z3...What Then?

The pattern continues for higher dimensions: return probabilities satisfy P(X2n = 0) ≍ n−d/2.g The
series converges iff d ≥ 3:

∞∑
n=1

n−d/2

{
= ∞ for d ≤ 2

< ∞ for d ≥ 3
. (34)

g≍ is notation for “converging asymptotically.”
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5 CONCLUSIONS

5 Conclusions

Imagine our tipsy mathematician, stumbling through the infinite grid of Z2, doomed to forever retrace
their steps back to the bar no matter how far they wander. In one and two dimensions, they always come
home, even if it takes an eternity. But the moment they stumble into the third dimension (maybe our
friend has learned to fly!), freedom awaits! With a whole new axis to explore, they might just vanish into
the void, never to be seen again. Two dimensions: You’re stuck in an endless loop. Three: The world is
your oyster.

But, maybe we aren’t stumbling through a city grid. Maybe we’re a stock price, or a particle moving
through space. The question of whether our not our walk will return home is a useful one to answer. And
as we’ve shown, whether or not the walk is symmetric, or how many dimensions you’re moving through,
is a key question in whether or not we’ll return home.
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