Calculus 1551, Section 4.

August 24, 2009

Notes

The integers: $\mathbb{Z} = \{ \dots -2, -1, 0, 1, 2, \dots \}.$

The rational numbers: $\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \}.$

The real numbers: $\mathbb{R} =$ "all the numbers on the number line." But how do you locate a number on the number line?

Putting integers on a line

- 1) Pick a line ℓ .
- 2) Pick a segment U as a unit of measure.
- 3) Pick a point O on ℓ and a direction on ℓ .
- 4) Using U mark the integers on ℓ , placing 0 and O and increasing in the chosen direction.

Locating the rational numbers on the line

If we want to find the location of a particular rational number, say 15/7, we divide U into 7 equal pieces, and we find the point we reach by putting 15 copies end-to end.

How about decimal notation?

You certainly are aware that in decimal notation, some numbers have infinite names. For example:

- $\pi = 3.1415926...$
- $\frac{1}{3} = 0.333...$
- 2.142857142857142857... (What is this number? You've seen it before!)
- 0.999... (What is this number?)
- 0.101001000100001000001... (Is this number rational or irrational?)

When we write a non-teminating decimal, we get some information about the location of the number from each truncation. When we say "between", below, we mean the inclusive between.

- $\pi = 3.??? \ldots \Leftrightarrow \pi$ is between 3 and 4
- $\pi = 3.1???\ldots \Leftrightarrow \pi$ is between $3 + \frac{1}{10}$ and $3 + \frac{2}{10}$
- $\pi = 3.14???... \Leftrightarrow \pi$ is between $3 + \frac{1}{10} + \frac{4}{100}$ and $3 + +\frac{1}{10} + \frac{5}{100}$

What number is:

- between 0 and 1
- between $\frac{3}{10}$ and $\frac{4}{10}$
- between $\frac{3}{10} + \frac{3}{100}$ and $\frac{3}{10} + \frac{4}{100}$
- between $\frac{3}{10} + \frac{3}{100} + \frac{3}{1000}$ and $\frac{3}{10} + \frac{3}{100} + \frac{4}{1000}$
- etc.

What number is:

- $\bullet\,$ between 0 and 1
- between $\frac{9}{10}$ and 1
- between $\frac{9}{10} + \frac{9}{100}$ and 1
- between $\frac{9}{10} + \frac{9}{100} + \frac{9}{1000}$ and 1
- *etc*.