Instructions. Do problems in space provided (continuing on back if necessary). This is a 100-point test.

1. [5 points] Using the absolute-value symbol and < (or >), express the following statement in mathematical symbols: "the distance from W to 3 is strictly greater than 5".

2. [10 points] Describe as a union of intervals: the set of all x such that $|2x-9| \geq 100$.

|2x-9|≥100 ⇔ |x-
$$\frac{9}{2}$$
| ≥ 50
⇔ $\begin{cases} x \ge 50+\frac{9}{2} \end{cases}$ ⇔ $2x-9 \ge 100$ or $-2x+9 \ge 100$
|or $x \le \frac{9}{2} \cdot 50$ ⇔ $x \ge \frac{109}{2}$ or $x \le \frac{91}{2}$
⇔ $x \in (\infty, 45\frac{1}{2}] \cup [54\frac{1}{2}, \infty)$ ⇔ $x \in [54\frac{1}{2}, \infty) \cup (-\infty, 45\frac{1}{2}]$

In problems 3 and 4, let ℓ be the line through (p,p^2) and (q,q^2) , where p and q are any real numbers.

3. [5 points] Write the equation for ℓ in slope-intercept form (y = mx + b):

Slope =
$$m = \frac{P^2 - g^2}{P - g} = P + g$$
.
Slope = $m = \frac{P^2 - g^2}{P - g} = P + g$.
Eq. of l is: $y - p^2 = (p + g)(x - p)$ $(x - p)$ $(x - p)$ $(x - p)$ $(x - p)$

4. [10 points] Express as a function of p: the value that q must have in order for ℓ to pass through (0,1):

If
$$l$$
 passes through $(0,1)$, then
$$l = (p+q)(0) + (-pq) \quad \text{by } (*).$$
i.e., $l = -pq$.
Thus, if l passes through $(0,1)$, (p,p^2) and (q,q^2) , then $q = \frac{-1}{p}$

5. [5 points] Write as a mathematical expression: "the average rate of change of f(x) on the interval from x = 6.9 to x = 7."

$$\frac{f(7) - f(6.9)}{7 - 6.9} = 10 (f(7) - f(6.9))$$

6. [5 points] Express as a limit: "the instantaneous rate of change of f(x) at x = 7."

$$\lim_{t \to t} \frac{f(t) - f(7)}{t - 7} = \lim_{n \to \infty} \frac{f(7+h) - f(7)}{h}$$

7. [10 points] An object falls from 256 feet, so its height after t seconds of falling is $256 - 16t^2$ feet. At what time does it hit the ground? Express as a limit: the object's instantaneous velocity when it hits the ground. Evaluate this limit.

Hits ground when
$$0=256-16t^2$$
, i.e., when $t=4$. (2)

$$\lim_{t\to 4} \frac{(256-16t^2)-0}{t-4} = \lim_{t\to 4} \frac{16(16-t^2)}{t-4} = \lim_{t\to 4} \frac{16(4-t)(4+t)}{t-4}$$

$$= \lim_{t\to 4} -16(4+t) = -128$$

8. [5 points] Explain the meaning of the expression " $\lim_{x\to 3} f(x) = 5$ " in plain English, without using the word "limit."

f(x) can be made as close as you wish to 5 by restricting that x to a sufficiently small punctured neighborhood of 3

9. [5 points] Explain the meaning of the expression " $\lim_{x\to\infty} f(x) = 8$ " in plain English, without using the word "limit."

f(x) can be made as close as you wish to f by restricting x to an interval of the form $(M, +\infty)$.

10. [5 points] Draw a graph of f to illustrate: " $\lim_{x\to 2} f(x)$ does not exist because the one-sided limits are different."

11. [5 points] Draw a graph of f to illustrate: " $\lim_{x\to 2} f(x)$ does not exist because f has an asymptote."

12. [5 points] Draw a graph of f to illustrate: " $\lim_{x\to 2} f(x)$ does not exist because f oscillates."

10. Find the limit if it exists. If it does not exist, explain why.

a. [5 points]
$$\lim_{x\to 3} \frac{x^2-9}{x-3} = \lim_{x\to 3} x+3 = 6$$

b. [5 points]
$$\lim_{x\to 3} \frac{x^2-9}{x-4}$$

c. [5 points]
$$\lim_{x \to 5} \frac{x^2 - 9}{x - 4}$$

e. [5 points]
$$\lim_{x\to 0}\cos\frac{1}{x}$$
 DNE. Oscillates (like $\sin\frac{1}{x}$)