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A.0. Introduction

The proofs of the foundational theorems, A.1–3 below, are based on a couple of definitions
and facts.

Definition. A digit is an element of the set { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }.

Fact 1. Corresponding to any sequence of digits c1, c2, c3, . . . , there is a unique real
number

.c1c2 · · · := c1 · 10−1 + c2 · 10−2 + · · ·

in the interval [0, 1].

We will not prove Fact 1, but accept it as true. It could be part of a definition of the real
numbers—a full definition would need to point out that ocasionally two different sequences
need to considered as the same real—or it could be derived from other definitions. We also
need the definition of continuous function and a simple fact about continuous functions
that is immediate from the definition.

Definition. Let f be a function from [0, 1] to R and let c be any point of [0, 1]. We say
f is continuous at c if, given any ǫ > 0, there is an open interval (a, b) containing c such
that |f(x) − f(c)| < ǫ for all x ∈ (a, b) ∩ [0, 1].

Fact 2. Suppose f is continuous at c. Let k be any real number. If f(c) < k (respectively,
f(c) > k) then there is an open interval (a, b) containing c such that f(x) < k (respectively,
f(x) > k) for all x ∈ (a, b) ∩ [0, 1].

Proof. Let ǫ := 1

2
|f(c) − k|, and apply the definition. /////

Apart from these definitions and facts and some basic logic and arithmetic, the proofs
we present are entirely self-contained. In particular, we make no reference to the least
upper bound principle (though of course it is implicit in Fact 1). This does not mean that
this section will be easy for an undergraduate to understand. To the contrary, this sec-
tion is presented in the style that a typical mathematician would learn in graduate school
and employ in professional writing. This style is very efficient and accurate in conveying
arguments, but only a reader who is thoroughly acquainted with it and understands its
conventions is likely to be comfortable reading it. These notes do not include any com-
mentary on the place the foundational theorems have in calculus. For that, you need to
look elsewhere.

Note that the theorems are all stated for the closed unit interval. In this we suffer no
essential loss of generality. The function g(x) := a + (b − a)x is a continuous function
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with continuous inverse of interval [0, 1] onto the interval [a, b]. Together with the fact
that a composition of continuous functions is continuous, this enables one to generalize the
theorems to arbitrary intervals.

A.1. The Intermediate Value Theorem.

Theorem. Suppose f : [0, 1] → R is continuous and

f(0) < 0 ≤ f(1).

Then there is c ∈ [0, 1] such that f(c) = 0.

Proof. Consider the numbers f(d+1

10
), where d is a digit. Note that 0 ≤ f(1) = f( 9+1

10
).

Let c1 be the smallest digit such that 0 ≤ f( c1+1

10
). Then

f(
c1

10
) < 0 ≤ f(

c1 + 1

10
).

Let c2 be the smallest digit such that 0 ≤ f( c1

10
+ c2+1

100
). Then

f(
c1

10
+

c2

100
) < 0 ≤ f(

c1

10
+

c2 + 1

100
).

We continue in this fashion, choosing for each positive integer k the least digit ck such that

f(0.c1c2 · · · ck) < 0 ≤ f(0.c1c2 · · · ck + 10−k).

Let c := 0.c1c2 · · ·, the full, unending decimal, i.e., the real number that we approach as
we continue the process of choosing the ci indefinitely. Every open interval containing c
contains a point at which the value of f is strictly less than 0 and a point at which the
value of f is greater than or equal to 0. By Fact 2, therefore, f(c) = 0. /////
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A.2. The Maximum Value Theorem

In proving the Maximum Value Theorem, we shall use the following notion. Suppose A
and B are sets of real numbers. We shall say that A dominates B if:

for every b ∈ B there is a ∈ A such that a ≥ b.

Note the following:

i) The relation of dominance is reflexive and transitive. In addition, if A dominates
every set in some family of sets, then it dominates the union of the family. (These
assertions are immediate from the definition.)

ii) If A does not dominate B, then B dominates A. (If A does not dominate B then
there is some element—call it b0—in B that is not less than or equal to any element
of A. Then b0 > a for all a ∈ A, and this means that B dominates A.)

iii) Given any finite family of sets of real numbers, there is one of them that dominates
the union of all of them. (This follows from i) and ii).)

Theorem. Suppose f : [0, 1] → R is continuous. Then there is c ∈ [0, 1] such that for all
x ∈ [0, 1], f(c) ≥ f(x).

Proof. From the facts immediately preceding the statement of the theorem, we see that if
A = A1 ∪ · · · ∪ Ak are any subsets of [0, 1], then for some i ∈ {1, . . . , k}, f(Ai) dominates
f(A). Thus there exists a sequence of digits c1, c2, c3, . . . such that f

(

[ c1

10
, c1+1

10
]
)

dominates

f
(

[0, 1]
)

, f
(

[ c1

10
+ c2

100
, c1

10
+ c2+1

100
]
)

dominates f
(

[ c1

10
, c1+1

10
]
)

, . . .etc. Letting Jk denote the
interval [.c1c2 · · · ck, .c1c2 · · · ck + 10−k], we have in general that

for each k, f(Jk) dominates f
(

[0, 1]
)

.

Let c := .c1c2 · · ·. If I := (a, b) is any open interval containing c then f(I∩ [0, 1]) dominates
f
(

[0, 1]
)

, since Jk ⊆ (a, b) whenever k is large enough that 10−k < min{b− c, c− a}. Now,
I claim that f(c) ≥ f(x) for all x ∈ [0, 1]. If not, there is x0 ∈ [0, 1] such that f(x0) > f(c).
Then, then by Fact 2, there is an open interval I about c such that f(x) < f(x0) for all
x ∈ I ∩ [0, 1]. But this is impossible since as we have seen f(I ∩ [0, 1]) dominates f

(

[0, 1]
)

.
/////
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A.3. The Integration Theorem

In dealing with integrals, we use the following notation. Let f be a bounded function on
J = [a, b]. Let P = { a = x0 < x1 < · · · < xn = b } be a partition of J . For each interval
[xi−1, xi], let λi be any number such that λi ≤ f(x) for all x ∈ [xi−1, xi]. Similarly, let µi

be any number such that µi ≥ f(x) for all x ∈ [xi−1, xi]. The lower sum determined by
this data is:

L(f, J,P, λ) :=
n

∑

i=1

λi(xi − xi−1),

and the upper sum determined by this data is:

U(f, J,P, µ) :=
n

∑

i=1

µi(xi − xi−1).

Lemma. Suppose that ǫ is some positive number such that

for all data P, λ and µ on [a, b], U(f, [a, b],P, µ)− L(f, [a, b],P, λ) > ǫ.

Then there are w1, w2 ∈ [a, b] such that |f(w1) − f(w2)| > 1

2

ǫ

b−a
.

Proof. We prove the contrapositive. Suppose that |f(w1)−f(w2)| ≤
1

2

ǫ

b−a
for all w1, w2 ∈

[a, b]. Then f(a) − 1

2

ǫ

b−a
≤ f(x) ≤ f(a) + 1

2

ǫ

b−a
for all x ∈ [a, b]. Letting P := { a = x0 <

x1 = b }, λ := f(a) − 1

2

ǫ

b−a
and µ := f(a) + 1

2

ǫ

b−a
, we get

U(f, [a, b],P, µ)− L(f, [a, b],P, λ) = (f(a)(b− a) +
ǫ

2
) − (f(a)(b− a) −

ǫ

2
) = ǫ.

/////

Theorem. Suppose that f is a continuous on [0, 1]. For any ǫ > 0, there are data P, λ
and µ on [0, 1] such that

U(f, [0, 1],P, µ)− L(f, J,P, λ) ≤ ǫ.

Proof. We will prove the contrapositive. Assume we have a bounded function f for which
the conclusion fails. We shall show that there is a point at which f is not continuous. By
assumption, there is a number ǫ > 0 such that

for all data P, λ and µ on [0, 1], U(f, [0, 1],P, µ)− L(f, [0, 1],P, λ) > ǫ. (1)

Now for at least one of the subintervals I = [0, 1

10
], [ 1

10
, 2

10
], · · · , [ 9

10
, 1] we must have that

for all data P, λ and µ on I, U(f, I,P, µ) − L(f, I,P, λ) > ǫ

10
, since otherwise we could

construct data P, λ and µ on [0, 1] violating (1). Let J1 := [ c1

10
, c1+1

10
] be one such interval.

Now repeat the argument inside J1 to find an interval J2 := [.c1c2, .c1c2 + 10−2] such that
for all data P, λ and µ on J2, U(f, J2,P, µ) − L(f, J2,P, λ) > ǫ

100
. Continuing in this
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fashion, we get a sequence of digits c1, c2, · · · and a corresponding sequence of intervals Jk

such that

for all data P, λ and µ on Jk, U(f, Jk,P, µ) − L(f, Jk,P, λ) > ǫ/10k.

Let c := c1c2 · · ·. Every open interval about c contains one of the intervals Jk. By the
lemma, each interval Jk contains numbers w1, w2 such that |f(w1) − f(w2)| > ǫ

2
. Thus,

there is no interval (a, b) about c such that |f(x)− f(c)| < ǫ

4
for all x ∈ (a, b)∩ [0, 1], so f

is not continuous at c. /////

A.4. Other Theorems

The Least Upper Bound Principle and the fact that a continuous function on a closed
bounded interval is uniformly continuous can be proved using the same pattern of reasoning
employed above.

Theorem. Let X be any subset of [0, 1]. Then the set

U := { y ∈ [0, 1] | ∀x ∈ X , x ≤ y }

has a smallest element, c.

Proof. If X is empty, let c = 0. If X is not empty, then neither is U . Pick digits ci so that

.c1c2 · · · ck + 10−k

is the smallest multiple of 10−k in U . Let c := .c1c2 · · ·. Now, c ∈ U , since if not then
there is an integer k such that some x ∈ X , exceeds c by more than 10−k, and then this
x also properly exceeds .c1c2 · · · ck + 10−k. We must also show that no number properly
smaller than c is in U . But if c′ < c, then c′ is less than some truncation of c—.c1c2 · · · ck,
say—and this is not in U , so neither is c′. /////

We will not write out a full proof of the theorem on uniform continuity, but only say enough
to show how a proof along the lines of those we’ve already presented can go. Suppose f is
a real-valued function on an interval I, and ǫ > 0. Consider the following statement about
f , I and ǫ:

∀δ > 0 ∃x1, x2 ∈ I , |x2 − x1| < δ and |f(x2) − f(x1)| > ǫ. N(f, I, ǫ)

If I is a union of finitely many intervals, I = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn] and f is
continuous at each point x1, . . . , xn−1, then

N(f, I, ǫ) implies that for some i, N(f, [xi−1, xi], ǫ).

Using the pattern of reasoning exhibited above, this can be used to show: if N(f, [0, 1], ǫ)
for some ǫ > 0, then there is c ∈ [0, 1] where f is not continuous.
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