
Proof, reasoning and imagination

In research mathematics, rigorous proof is the means by which new results are validated
and is the standard form for reporting findings and for compiling and recording mathe-
matical knowledge. The Greek model of a deductive science, as exemplified by Euclid, is
paradigmatic.

Rigorous deduction is also a working tool for research mathematicians. In exploring
an unfamiliar topic, hunches and conjectures are checked by constructing proofs—or at-
tempting to do so. Moreover, the search for proof can lead to new conjectures and deeper
understanding.

All this taken for granted, few mathematicians would regard proof as the sole or
perhaps even the chief instrument of discovery and invention. Proof has a unique role in the
discipline of mathematics, but it works hand-in-hand with experience and experimentation
(possibly by computer), inductive reasoning, generalization, analogy, intuition, mental
imagery and mysterious unconscious processes. The best mathematics seems to come
from a marriage of discipline and freedom, when rigorous logical structures serve as a
medium for the imagination.

The role of proof in the classroom, in contrast, generates contoversy. Lynn Arthur
Steen, in the concluding chapter of NCTM’s 1999 Yearbook (which is devoted to mathe-
matical reasoning), writes that “there is precious little agreement on how, when, why, or
to whom to teach it.”[S] While this statement refers primarily to the K-12 curriculum,
even at the university level there is a range of opinion. Should freshman calculus include
proofs? Of what? With what level of rigor? For what purposes or to what ends? (See [T].)
Many popular American textbooks include careful, rigorous proofs, but they are dumped
in appendices—as if to acknowledge their uncertain relevance to calculus learners. The
same uncertainty persists in linear algebra, differential equations and other mathematics
courses that are taken by large numbers of students headed into science, enineering or other
technical professions. Only in advanced courses designed for those intending to become
professional mathematicians is the place of proof perfectly clear.

Perhaps proof is to narrow an idea, too specialized in its uses, too stylized in its
conventions, and too much governed by the needs arising from its professional uses to
figure in the education of those not destined for careers in mathematics. If so, there
is something more general and capable of more uses that can claim its place. Clearly,
everyone should learn to reason mathematically . The idea covers vastly more ground than
the idea of proof. To formulate generalizations and to create logical arguments that justify
and explain them—these skills are useful whether the subject is mathematics or law or
medicine or anything else, and to exercise them in a mathematical setting is a great part of
what it means to be a responsible, reasonable math user. Moreover, as these skills mature
by being subjected to higher and higher discipline, they blend into the activity of proving.
Proof is simply a way of recording crucial pieces of reasoning so that they can be can be
evaluated, shared and replicated.

This, at least, is what many claim. In particular, it is the position of the Principles
and Standards for School Mathematics (NCTM, 2000). This document includes among
it’s ten standards, a strand for “Reasoning and Proof,” and here we read:

Mathematical reasoning and proof offer powerful ways of developing
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and expressing insights about a wide range of phenomena. People who
reason and think analytically tend to note patterns, structure, or reg-
ularities in both real-world situations and symbolic objects; they ask
if those patterns are accidental or if they occur for a reason; and they
conjecture and prove. Ultimately, a mathematical proof is a formal way
of expressing particular kinds of reasoning and justification.

Some additional excerpts from the same section confirm that the authors of the Standards
understand by “mathematical reasoning” the process of finding true mathematical state-
ments and providing justification in a form that meets accepted standards of evidence and
logic. This, to them, is the essential nature of reasoning and proof:

Doing mathematics involves discovery. Conjecture—that is, informed
guessing—is a major pathway to discovery. . . .

statements need to be supported or refuted by evidence . . .

mathematical reasoning is based on specific assumptions and rules . . .

[proofs are] arguments consisting of logically rigorous deductions of con-
clusions from hypotheses . . .

As I already suggested, this sort of activity is not uniquely mathematical. A person
who could note patterns and explain them clearly, persuasively and logically would be have
an advantage in almost any intellectual task, and would be particularly well equipped to
communicate and cooperate with others similarly engaged. This is a superb argument
for including reasoning among the things that every student ought to learn. There is no
question of its value.

But this brigs us to the brink of a very serious misunderstanding of what mathematics
is all about. Go back, if you will, to the two paragraphs that introduced this section. In
research mathematics, proof—in the sense of a well-articulated argument according to
prescribed rules—is usually just the finishing touch on a discovery, the vehicle in which
it is shared with the public, the final check on its truth, the means by which it gains
acceptance in the mathematical community. The way that truths are discovered is entirely
different. In 1968, Paul Halmos wrote:

Mathematics—this may surprise you or shock you some—is never deduc-
tive in its creation. The mathematician at work makes vague guesses,
visualizes broad generalizations, and jumps to unwarrented conclusions.
He arranges and rearranges his ideas, and he becomes convinced of their
truth long before he can write down a logical proof.

Similarly, Fields Medalist Richard Borcherds declared in 1998:
The logical progression comes only right at the end, and it is in fact
quite tiresome to check that all the details really work. Before that, you
have to fit everything together by a lot of experimentation, guesswork,
and intuition. (Both passages quoted in [K], page 269.)

The fact that in the end we frame things deductively must not lead to the mistaken
opinion that deduction is the whole game. As I said before, deduction is a way of checking
and verifying. The mathematical community demands it as a reliable test of truth, and it
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is the accepted form for commmunicating mathematical knowledge. Also, reasoning in the
sense described in the Standards—making generalizations and fitting them into a logical
framework—plays a role along the pathways to discovery. The experienced mathematician
reasons easily and naturally, just as a skilled pianist uses technique, such as timing, voicing
and ornamentation, with little conscious effort. This kind of reasoning, however, is only a
condition for good mathematical thinking—not its apotheosis. When I say this, I hope to
be understood in much the same way as had I said that good technique is a condition for
good musicianship, not its highest realization. Indeed, the most brilliant technique is quite
worthless without that essential something—call it musicianship or what you will—that
we recognize so easily yet find so difficult to describe.

The way that mathematicians speak about the work they do has always been limited
by the manners and conventions of the community and perhaps by personal inhibitions as
well. Many mathematicians, like craftsmen, take pains to hide the joints and seams and
rub away the tool marks. What they make public is the finished product, not the toil that
went into the making. Gauss exhibited this tendency in the extreme, comparing himself to
a builder who removes the scaffolding when the construction is complete. This makes sense
if mathematics is a body of abstract knowledge transcending individual contributors, an
intellectual palace that mathematicians are called upon to furnish. Likewise, those guiding
and upholding the discipline naturally address the universal and impersonal features rather
than the experiences of individuals. We pay attention to the final product, but say very
little about the experience of making it. Yet, if mathematicians aim to share their way
of thinking, or if they simply take into account the fact that each generation must pass
its craft on to the next or else let it die, then there may be a reason to describe how
mathematical work is experienced and how and why it fascinates.

What does it feel like to do mathematics? I cannot speak universally, even of my own
experience. However, at times it can be very much like going into a mental studio of sorts, a
place is furnished with abstract objects. Some are clear and distinct while others are vague
or tentative in appearance. Some have no visual correlates at all, but are merely present
in a ghostly way. Some are representatives of the actual things I’m thinking about—a
triangle, for example—while others resemble the notation I use on paper. In various ways,
the imagery registers or represents significant features of the mathematics. I can modify
or distort these images, rearrange the parts, “zoom in” on features or examine them from
different perspectives. When I am thinking hard about a mathematical problem, I often
find myself trying to assemble imagery in ways that satify relevant constraints and meet
the requirements of the problem. For example, I may try to verify a a conjecture by
fitting it into a more complete or more detailed story or picture. (Only rarely do I try to
put together stepwise logical arguments.) Perhaps most significant, the imagry does not
become useful and effective until it has acquired familiarity.

The work of the imagination is difficult to describe. Introspection is largely disre-
garded by cognitive scientists, because there is never more than one observer, and his
reports cannot be verified or checked. The account I give about what is happening in
my mind may or may not have any relationship to the actual systems that enable me to
think. Imaginary objects, however—whether it be mathematical or any other kind—are
not necessarily private and hidden. Literary characters, like Tom Sawyer, are at once
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purely imaginary and completely public and intersubjective. You and I agree that Tom
Sawyer, a clever lad, knew Huck Finn and Becky Thatcher. We do not know the exact
color of his hair, or his height in feet and inches and are resigned never to know. There are
yet other things about him that I do not know off hand but could determine by referring
to the definitive treatise, where they might be given precisely (how long was he lost in the
cave) or where enough information to make an informed guess might be available.

Mark Johnson’s remarks about reasoning strike a very similar note:

. . . human rationality is imaginative through and through, insofar as
it involves image-schematic structures that can be metaphorically pro-
jected from concrete to more abstract domains of understanding. Obvi-
ously, this is not imagination in the Romantic sense of unfettered cre-
ative fancy; rather, [it is] an extended Kantian view of imagination as
a capacity for ordering mental representations into unified, coherent,
meaningful wholes that we can understand and reason about. Imagi-
nation, in this sense, mediates between sense perception and our more
abstractive conceptualizing capacities; it makes it possible to concep-
tualize various structural aspects of our experience and to formulate
propositional descriptions of them. [J, page 198]

In the parts of my work that I feel are most creative, I deal directly with these mental
objects, designing and creating them or putting them together from simpler mental objects
according the requirements of the situation. The qualities of the thing must mark or
represent the important features of the problem, question or situation. Getting this right
may take a great deal of disciplined work, and involves studying and understanding the
way that others have treated similar objects and what is known and written about their
properties.

A narrative of sorts accompanies the imagery, somehow laying down rules or con-
straints that are not explicit on the mental stage. My characters may have histories or
background files I have built up from textbook presentations, research papers and my own
investigations. Often my work consists in revising the images over and over again to get
them represent more accurately or completely what I know. Sometimes I forget or ignore
the constraints that ought to apply, and then I might create a faulty image and leap to
an incorrect conclusion. The narrative usually evolves with the imagery. When I reach a
solution, or a conclusion or an insight, there is a sudden harmony in the imagery. In the
mean time, I have also been modifying and revising the narrative, so when the harmony
is achieved there is often along with it a fully formed outline for a proof. Sometimes I fool
myself and seem to perceive a harmony that only evaporates as the narrative is worked
through in detail. It’s as if a couple of businessmen had sketched out a great deal that
later fell apart as the details of the contract were being ironed out.

Building and playing with mental objects is something I can do voluntarily whenever I
want to, but the imagery that matters—that leads to new knowledge, I mean—is not easy
to make. When I am exploring something new, I may be overwhelmed by the complexity
and unable pick out a mechanism or gimmick that enables me to find a meaning in it or
extract a conclusion from it. Sometimes the consequences of the laws or rules that govern
the situation are unclear or beyond my power to picture. I might have to work for days
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or weeks to incorporate enough insight into my conceptual model to get a structure that
I can exploit. Sometimes it seems the goals are wrong, in the sense that the structures I
build just grow more clumsy and ugly. I may decide to abandon the enterprise, or change
directions. Sometimes there is something like a moment of grace, when a power beyond
my understanding bestows an idea, or opens a vista to my internal eyes.
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