Suppose f is a function with domain [a, b]. Since we will be concerend with subsets of [a, b], we will simplify notation by letting (p, q) stand for $(p, q) \cap [a, b]$. If X is a subset of [a, b],

$$f(X) := \{ f(x) \mid x \in X \}.$$

Suppose $c \in [a, b]$. Recall what we mean when we say that f is continuous at c: For any real number $\epsilon > 0$, there is a real number $\delta > 0$ so that:

for all
$$x \in [a, b]$$
, $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.

The condition above (offset on its own line) is equivalent to:

for all
$$x \in (c - \delta, c + \delta)^{\cdot}$$
, $f(x) \in (f(c) - \epsilon, f(c) + \epsilon)$,

and to:

$$f((c-\delta, c+\delta)^{\cdot}) \subseteq (f(c)-\epsilon, f(c)+\epsilon).$$

Fact. If X is a bounded subset of the real line and u is the least upper bound of X, then any open interval that contains u also contains points of X. *Proof.* If u were surrounded by an open interval containing no ponts of X, there would be points in that interval to the left of u that were upper bounds for X. Then u could not be the least upper bount.

Boundedness Theorem. Suppose f is continuous on [a, b]. Then f([a, b]) has an upper bound.

Proof. Since $a \in X$, X is nonempty. Since $X \subseteq [a, b]$, X is bounded above. Let u be the least upper bound of X. We claim that u = b. We prove this by an argument by contradiction. Suppose that u < b. By the definition of continuity (with $\epsilon = 1$), there is some $\delta > 0$ such that $f((u-\delta, u+\delta)^{-}) \subseteq (f(u)-1, f(u)+1)$, i.e., $f((u-\delta, u+\delta)^{-})$ is bounded above. Now by the Fact, $(u-\delta, u+\delta)^{-}$ contains some points in X. We can conclude that $f([a, u + (\delta/2)])$ is bounded above. This contradicts the assumption that u is an upper bound of X. Thus, u is not strictly less than b, so u = b.

Maximum Value Theorem. Suppose f is continuous on [a, b]. Let M be the L.U.B. of f([a, b]). Then there is $c \in [a, b]$ such that f(c) = M.

Proof. If f(a) = M, we have nothing to prove, so suppose f(a) < M. Let X be the set of all points $x \in [a, b]$ such that $f([a, x]) \subseteq (-\infty, M)$. Since $a \in X$, X is not empty. Since $X \subseteq [a, b]$, X is bounded above. Let c be the least upper bound of X. We claim that f(c) = M. We prove this by an argument by contradiction. Suppose that f(c) < M. Let $\epsilon := (M - f(c))/2$. But by the definition of continuity, there is some $\delta > 0$ so that $(c - \delta, c + \delta))$ is contained in $(f(c) - \epsilon, f(c) + \epsilon)$. Thus $f([a, c + \delta]) \subseteq (-\infty, M)$. This contradicts the assumption that c is an upper bound of X.