Lemma. For any real numbers a and b, $|a + b| \le |a| + |b|$. *Proof.*

Proposition. Suppose $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ is a polynomial of degree *n* with leading coefficient 1. Let *M* be a positive real number. Suppose

$$x > 1 + M + |a_{n-1}| + \dots + |a_0|. \tag{*}$$

Then f(x) > M. *Proof.* If (*) holds, then

Corollary. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ is a polynomial of degree *n* with leading coefficient $a_n > 0$. Let *M* be a positive real number. Then there is x_0 such that: if $x > x_0$, then f(x) > M.

Proof.