- 1. Let $f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}$. Write the equations for the level curve that passes through (2,3) and for the level curve that passes through (0,6). Draw these curves.
- 2. Let $h(x, y) = \sin(x y^2)$. Compute $h_{xx}(0, 1)$ and $h_{xy}(0, 1)$ and $h_{yy}(0, 1)$.
- 3. Find the equation for the tangent plane to the graph of $z = e^x \sin y$ at $(1, \pi/2, e)$.
- 4. Suppose $x = r \cos \theta$ and $y = r \sin \theta$ and z = f(x, y). Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ in terms of $r, \theta, \frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 5. a. Find the instantaneous rate of change of z = x + xy in the direction of the vector (3/5, 4/5) at the point (2, 5).
 - b. Find $\frac{\partial z}{\partial u}|_{(0,0)}$, where u has the same direction as (1,2).
- 6. At the point (1,2), in what direction does the function $f(x, y) = x^3y xy^2$ increase most rapidly, and what is the rate of increase?
- 7. Find the equation of the plane tangent to the surface $\frac{\pi}{2} + 1 = x + y z + \sin(xyz)$ at $(1, \frac{\pi}{2}, 1)$.
- 8. Do each part of the following:
 - a) Let f(x, y) be a differentiable function on the plane. Suppose f(a, b) = c. Write the equation for the tangent plane to the surface z = f(x, y) at the point (a, b, c).
 - b) Let F(x, y, z) = f(x, y) z. What is the relationship between the level surface of F at 0 and the graph of f?
 - c) Compute $\nabla F(a, b, c)$.
 - d) Recall from M1552 that if **n** and \mathbf{v}_0 are vectors in space, then the plane that is normal to **n** and passes through \mathbf{v}_0 is described by the the equation in vector form $\mathbf{n} \cdot (\mathbf{v} - \mathbf{v}_0) = 0$. Write in vector from the equation for the plane that is normal to $\nabla F(a, b, f(a, b))$ and passes through (a, b, c).
 - e) Convert the vector equation in part c) into algebraic form, *i.e.*, let $\mathbf{v} = (x, y, z)$, and write out the vector equation in terms of x, y and z.
 - f) Bonus problem. Observe that planes that the answers to a) and e) are the same. Explain why.
- 9. Find and classify the critical points of
 - a. $f(x,y) = x^3 + x^2 y^2$
 - b. $h(x,y) = x^3 6xy + 8y^3$
- 10. Find the locations of the points where f(x, y, z) = z x y has maximum and minimum values and find those values, subject to the constraint $g(x, y, z) = x^2 + y^2 + z^2 = 50$.