M2056 Test 1 09/17/2012 Name_____

1.a. Draw and label the level sets at k = 1, k = 4 and k = -4 of $f(x, y) = (y - x)^2$.

1.b. Sketch the graph of z = -4x - 3y + 12 and describe the shape of the graph in a sentence.

2. Compute the partial derivatives:

a)
$$\frac{\partial}{\partial x}x\sin(xy) =$$

b)
$$\frac{\partial}{\partial y} x \sin(x y) =$$

c)
$$\frac{\partial^2}{\partial y \partial x} (x^5 y^7 + x^2 y^3) =$$

3. Find the equation for the plane tangent to $z = \frac{xy}{x+y}$ at the point (6,3,2).

4. Find $\frac{d}{dt}f(\mathbf{c}(t))$ when $t = \pi/2$ if $f(x, y) = 3x - y^2$ and $\mathbf{c}(t) = (\cos t, t)$.

5. Find the directional derivative of $z = x + x^2y + y^2$ in the direction u = (3/5, 4/5) at the point (x, y) = (2, 1).

 $\frac{\partial z}{\partial u}\mid_{\scriptscriptstyle (2,1)} =$

- **6.** Suppose z = f(s, t) and s = g(u, v) and t = h(u, v).
- a) Express $\frac{\partial z}{\partial u}$ in terms of $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$, $\frac{\partial s}{\partial u}$, $\frac{\partial t}{\partial u}$.

$$\frac{\partial z}{\partial u} =$$

b) Suppose $f_s(3,4) = 5$, $f_t(3,4) = 7$, g(0,1) = 3, h(0,1) = 4, $g_u(0,1) = 10$, $h_u(0,1) = 20$. What is the numerical value of the following?

$$\frac{\partial z}{\partial u}\Big|_{\substack{u=0\\v=1}} =$$

7. Find the critical points of the following functions, and determine whether they are local maxima, minima or saddle points.

(a)
$$f(x,y) = x^2 + 2xy + 5y^2 + 8x$$

(b)
$$f(x,y) = x^2 + 4xy + 2y^2 - 8x$$

8. Using Lagrange Multipliers, find the maximum and minimum values of z = 3x - 2y on the circle $4 = x^2 + y^2$.