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Let S be a sample space. Recall that if A ⊆ S is an event, P (A) denotes the
probability of A. (Probability is a function on events.)

0.1 Random Varaibles, Probablity Mass Function, Expec-
tation and Variance.

In this discussion, we will assume that S is discrete (i.e., finite or countable).
We shall see later (i.e., in Chapter 6) that this assumption is not essential—that
is to say, we can develop a perfectly sound theory of random variables without
it. However, the assumption is often satisfied in practice. When this is true,
it is possible to compute the probabilities of all events from the probabilities
of the outcomes they contain (Fact 1, below). This simplifes some proofs (e.g.,
Fact 3, below.)

Fact 1. If A is an event, P (A) =
∑

s∈A P ({s})

Definition. A function from S to R is called a random variable.

Remark. We really should have mentioned the requirement that X be measur-
able. We will see the need for this assumption later. For the time being, it is not
essential to include this stipulation, since all real-valued functions on a discrete
set are measurable.

Remark. Note that given any sample space (discrete or not), and any random
variable, we may make a coarser sample space from S by treating the events
of the form { s ∈ S | X(s) = x }, x ∈ R, as outcomes. As long as we ask no
questions that concern events that are any finer (i.e., smaller) than these, we
lose nothing.

Remark. We say that X is discrete if its set of values {X(s) | s ∈ S } is discrete.
Certainly, if S is discrete, then so is X. In case only X is discrete, then by the
maneuver in the last remark, we may replace the sample space on which X
is defined with a discrete one. This shows that confining attention to discrete
sample spaces in not a serious limitation.

Definition. The probability mass function of X is

p (x) := P (X = x) = P ({ s ∈ S | X(s) = x }).
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Fact 2.
∑

x∈R p (x) = 1.

Definition. The expected value of X is E(X) :=
∑

x∈R x p (x).

Remark. When S is discrete, E(X) =
∑

s∈S X(s) P ({s}).

Fact 3. If g : R→ R, then g (X) = g ◦X is a random variable, and

E(g (X)) =
∑
s∈S

g (X(s)) P (s) =
∑
x∈R

g (x) p (x).

Fact 4. If a and b are constants, E(a X + b) = a E(X) + b.

Definition. The variance of X is Var(X) := E
((

X − E(X)
)2).

Fact 5. Var(X) = E(X2)−
(
E(X)

)2.

Fact 6. Var(a X + b) = a2 Var(X).

0.2 Binomial Random Variable

Motivating example. Consider the experiment of flipping a coin n times. The
sample space is {H,T}n; it has 2n outcomes. Let p ∈ [0, 1]. If the coin is biased
and lands on heads with probability p, then we would assign probabilities to
outcomes by the rule P (s) = pi(1−p)n−i, where i is the number of Hs in s. The
probability of an outcome depends only on the number of heads in the outcome,
and not the pattern in which they occur. The number of outcomes with i heads
is
(
n
i

)
, and so the probability of getting i heads is

(
n
i

)
pi(1− p)n−i.

Definition. Let X be a random variable. X is said to be a binomial random
variable with parameters n and p if its values are 0, 1, 2, . . . , n and its probability
mass function is

p (i) = P (X = i) =
(

n

i

)
pi(1− p)n−i, i ∈ {0, 1, 2, . . . , n},

and p (i) = 0 for i 6∈ {0, 1, 2, . . . , n}.

Fact. Let X binomial random variable with parameters n and p. Then:

• E(X) = n p;

• Var(X) = n p (1− p).

0.3 Poisson Random Variable

Motivating example. Consider the experiment of taking a container full of rice
from a huge supply that contains a modest number of red grains thoroughly
mixed among white ones. We can view each red grain as being on trial, with
success meaning inclusion among the taken grains. The the probability of suc-
cess for any given grain is vanishingly small, but there are a vast number of
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grains on trial. If on average there are a red grains in every container, then the
number of grains taken will vary around a is a way that can be estimated by
the binomial distribution (as demonstrated in class).

Definition. Let X be a random variable. X is said to be a Poisson random
variable with parameter a if its probability mass function is

p (i) = P (X = i) =
e−a ai

i !
, i ∈ {0, 1, 2, . . .},

and p (i) = 0 for i 6∈ {0, 1, 2, . . .}.

Fact. Let X Poisson random variable with parameter a. Then:

• E(X) = a;

• Var(X) = a.

Fact. The Poisson random variable with parameter a and the binomial random
variable with parameters n (number of flips) and a/n (probability of success) are
good approximations of one another if n is very large. Indeed, as n → ∞, the
probability mass function associated with this binomial random variable tends
to the probability mass function of the Poisson with paramter a.

0.4 Geometric Random Variable

Motivating example. Roll a die until you get a one. More generally, repeat a
trial with probablity p of success over and over until a success is achieved. Let
X be the number of trials required.

Definition. Let X be a random variable. X is said to be a geometric random
variable with parameter p if its probability mass function is

p (i) = P (X = i) = p (1− p)i−1, i ∈ {1, 2, . . .},

and p (i) = 0 for i 6∈ {1, 2, . . .}.

Fact. Let X be a geometric random variable with parameter p. Then:

• E(X) = 1/p;

• Var(X) = 1−p
p2 .

0.5 Negative Binomial Random Variable

Motivating example. Roll a die until you get four ones. More generally, repeat
a trial with probablity p of success over and over until r successes are achieved.
Let X be the number of trials required.
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Definition. Let X be a random variable. X is said to be a negative binomial
random variable with parameters r and p if its probability mass function is

p (i) = P (X = i) =
(

i− 1
r − 1

)
pr−1(1− p)i−r, i ∈ {r, r + 1, r + 2, . . .},

and p (i) = 0 for i 6∈ {r, r + 1, r + 2, . . . , n}.

Fact. Let X be a geometric random variable with parameter p. Then:

• E(X) = r/p;

• Var(X) = r(1−p)
p2 .

0.6 Hypergeometric Random Variable

Motivating example. From an urn containing N beads of which D have a dis-
tinguishing property, take n without replacement, where n ≤ min{D,N −D}.
Let X be the number of distinguished beads.

Definition. Let X be a random variable. X is said to be a hypergeometric
binomial random variable with parameters N , D and n ≤ min{D,N −D} if its
probability mass function is

p (i) = P (X = i) =
(

D

i

)(
N −D

n− i

)
, i ∈ {0, 1, 2, . . . , n},

and p (i) = 0 for i 6∈ {0, 1, 2, . . . , n}.

Fact. Let X be a geometric random variable with parameter p. Then:

• E(X) = nD
N ;

• Var(X) = n p (1− p)
(

1− n−1
N−1

)
, where p = D/N .

0.7 The Socks-in-the-Dryer Random Variable

Remark. This is optional. I put it here because I am obsessed with the problem.

Motivating example. Put n pairs of socks, each a different color, in the dryer.
Remove them one at a time until a match is made. Let Xn be the number of
socks taken when the match occurs.

Elaboration. The probability of getting a match on the first draw is 0 and on
the second draw it is 1

2n−1 . If k > 1 socks have been taken without a match,
then there are 2n−k socks remaining in the dryer, (2n−k)−k = 2(n−k) ways
to take another sock without making a match, and k ways to make a match.
The probability of getting a match on the third draw, therefore, is 2(n−1)

2n−1 ·
2

2n−2 .
In general, the probability of getting the first match on the ith draw is

2(n− 1)
2n− 1

· 2(n− 2)
2n− 2

· · · 2(n− i + 2)
2n− i + 2

· i− 1
2n− i + 1

.
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The probability mass function of this variable, therefore, is given by

p (i) = P (Xn = i) =
(i− 1) 2i−2

2n− i + 1

i−2∏
j=1

n− j

2n− j
, i ∈ {2, 3, . . . , n},

and p (i) = 0 for i 6∈ {2, 3, . . . , n}. (If the upper index of an indexed product
is less than the lower, we take it to be 1.) Remarkably, there is a very simple
formula for the expectation of this random variable:

E(Xn) = 4n

/(
2n

n

)
=

n∏
i=1

2i

2i− 1
.

I have not found a nice formula for Var(En), and I do not have a simple demon-
stration for the formula for E(Xn).
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