
Lecture 17. The Normal Distribution
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• From the fact above, we can conclude that

1
√

2π
e−x2/2

is a pdf, since this is a non-negative, continuous function whose integral over the line
is 1. A random variable having this as its pdf is called “standard normal.” Often the
letter Z is used to denote such a variable.

• If Z is standard normal, E(Z) = 0 and Var(Z) = 1.

• Suppose Z is standard normal. Let σ be a positive real number and let µ be any real
number. Then

X = σZ + µ

is said to be normal (µ, σ).
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• If X normal (µ, σ), then E(X) = µ and Var(Z) = σ2.

P (X ≤ a) = P (σZ + µ ≤ a)

= P

(
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a − µ

σ
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This shows that the pdf of a normal (µ, σ) random variable is:
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e−(x−µ)2/2σ2

The method of Z-scores. This is simply the observation that if X normal (µ, σ), then
the probability that X is less than z0 σ above its mean is the same as the probability that
the standard normal is less than z0 above its mean:

P (X ≤ µ + z0 σ) = P (Z ≤ z0).

Thus, one can use a table of values of P (Z ≤ z0) to find P (X ≤ x0)

Example. If moths of a certain species average 2.64 inches in length, with a standard
deviation of 0.23 inches, what proportion of the moths are more than 3 inches long. So-

lution. Three inches is 36/23 standard deviations above the mean. By Mathematica,
1√
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∫ 36/22
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e−z2/2 dz is approximately 0.94
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