
Lecture 2. Constructing Probability Spaces

This lecture describes some procedures for constructing probability spaces. We will work
exclusively with discrete spaces—usually finite ones. Later, we will see that the operations
introduced here actually work for more general spaces.

2.1. Trees.

Imagine the following experiment:

- Pick a library at random.

- Go there, and pick a shelf at random.

- From that shelf, pick a book at random.

- Open the book to a random page.

- On that page, put your finger on a random word.

We can visualize all the different ways in which you might complete this experiment by
means of a tree diagram, a branching chart that illustrates the options. Draw a dot
to represent a starting point. From this dot, draw several line segments—we call them
edges—one for each of the libraries you might choose. Each edge ends at a dot labelled by
a library. From each library dot, draw further edges corresponding to the shelves in that
library; these terminate at dots labelled by the shelves. Each shelf dot has edges coming
from it which end in dots labelled by the books on that shelf. (If there are several copies
of a book on a given shelf, we will use just one edge for all the copies.) Each book dot
has edges coming from it that end in page dots, and each page dot has edges from it that
end in dots labelled by words. (If a word such as “and” appears several times on the page,
we will use just one edge and terminal dot to represent it.) Each time you perform the
experiment, you trace a path from the starting point, through a library, a shelf, a book and
a page, finally ending on a word. Note that after splitting ways, paths never rejoin. The
same word might occur at the end of many different paths, but the dots they are attached
to are different.

Suppose the choices at each possible stage have probabilities assigned to them. Per-
haps there are three libraries: A, B and C, and the chances of choosing them are 1/2,
1/3 and 1/6, respectively. The set of all libraries, in other words, is a probability space.
Again, each library has many shelves and each shelf has its own probability of being cho-
sen randomly by someone in the library. In this way, the set of all shelves at library A
becomes a probability space, and the same is true for the set of shelves in B and the set
of shelves in C. Similarly, the books on each shelf have a probability space to represent
their chances of being chosen. The same is true of the pages in each book—they form a
probability space. And finally, each page has an associated probability space. We may
visualize this by labeling the edges emerging from any dot by the probabilities associated
with the choices they represent.

Now consider the collection of all paths from the starting point all the way to a word.
A path contains a complete history of all the random choices up to and including the word
finally chosen at the end. How can we compute the probability of following a given path?
If we have labelled the edges as suggested at the end of the previous paragraph, then we
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simply multiply the edge labels as we walk along the path. The justification is that the
labels on the edges show the proportion of times each of the options will be taken. For
example, if Library A has a 1/2 chance of being chosen and if a given shelf in library A
has a 1/100 chance of being chosen, then at the start there is a 1/200 chance of arriving
at that shelf.

Tree diagrams are often used with so-called urn models. Imagine a large urn into
which The Dealer has placed red, green and blue beads.2 You take a bead at random
from the urn, and then depending on the color chosen, The Dealer adds or removes some
additional red, green or blue beads. The contents are mixed, and then you draw again.
Again, depending on the color you draw, The Dealer adds or removes some beads. And
so it goes. If the number of beads at the outset is known and if the rules for adding or
removing beads are known, then you can use a tree diagram to calculate the probability
of any particular sequence of draws.

Example 1. Suppose there are initially 3 red, 2 green and 1 blue bead. When you remove
a bead, it is not replaced. No other beads are added or removed. The figure below shows
the tree diagram that describes the possibilities if two draws are made. Note that the
denominator is 6 at the first draw, but 5 at the second. This is because the bead taken on
the first draw is not replaced.

start

red

3�6

green
2�6

blue

1�6

red
2�5

green
2�5

blue

1�5

red
3�5

green
1�5

blue

1�5

red
3�5

green
2�5

This gives us a probability space with 8 elements, one for each path. The elements in the

2 Many examples involve a situation that is set up and controlled by a agent who follows
certain rules but but then stands back from the chance events that you subsequently
encounter. We will call him “The Dealer.”
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space, together with the values of the pmf for the space are given in the following table:

ω rr rg rb gr gg gb br bg
f(ω) 6/30 6/30 3/30 6/30 2/30 2/30 3/30 2/30 ,

where xy refers to the outcome consisting of a bead of type x followed by a bead of type
y. The event of getting exactly one red is {rg, rb, gr, br}, and the probability of this event
is

P
(
{rg, rb, gr, br}

)
= f(rg) + f(rb) + f(gr) + f(br) =

6

30
+

3

30
+

6

30
+

3

30
=

18

30
=

3

5
.

Example 2. Now, suppose we start with the same initial conditions, but when you remove
a bead The Dealer replaces it with a blue bead. The figure below shows the tree diagram
that describes the possibilities if two draws are made. In this case, the denominator is
always 6, since the first drawn bead is replaced with a blue bead.

start

red

3�6

green
2�6

blue

1�6

red
2�6

green
2�6

blue

2�6

red
3�6

green
1�6

blue

2�6

red
3�6

green
2�6

blue

1�6

This gives us a probability space with 9 elements, since now it is possible to draw two
blues in a row. In this space,

P
(
{rg, rb, gr, br}

)
= f(rg) + f(rb) + f(gr) + f(br) =

6

36
+

6

36
+

6

36
+

3

36
=

21

36
=

7

12
.
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Problems.

1. In Example 1, what is the probability of getting exactly one green? Exactly one blue?
Two reds? Two whites? No reds? Answer the same questions for example 2.

2. Suppose we extend Example 1 by making a third draw. Draw the associated tree
diagram. List the elements in the associated probability space, and make a table to
show the values of the pdf. Do the same for Example 2.

2.2. Products, quotients and subspaces.

There are three very general procedures for building complex probability spaces from sim-
pler ones (products) and for modifying probability spaces to produce new ones (quotients
and subspaces). Products, quotients and subspaces occur throughout mathematics. Their
occurrence in probability theory is well understood, but I am not aware of any expositions
that emphasize them. This lecture, therefore, is something of an experiment. I hope that
even if the operations seem abstract, the examples will show right away that they are
indeed useful organizing principles.

Products. Recall that the product of two sets A and B—denoted A × B—is the set of
all ordered pairs (a, b) with a ∈ A and b ∈ B.

Example. Let Z denote the integers: 0,±1,±2, . . .. Then Z×Z may be identified with the
set of “lattice points” in the plane.

Example. Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K} and let B = {♠,♥,♣,♦}. Then

A × B = {(1,♠), (2,♠), . . . , (K,♠), (1,♥), . . . , (K,♦)}.

It is easier to visualize A ×B as a grid. Below, I have labeled the columns by elements of
A and the rows by elements of B. To save space, I have written 1♠ as an abbreviation for
(1,♠) and have abbreviated the other entries similarly.

1 2 3 4 5 6 7 8 9 10 J Q K

♠ 1♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠
♥ 1♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥
♣ 1♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣
♦ 1♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦

Definitions:

a) Suppose Ω0 and Ω1 are discrete probability spaces with pmfs f0 and f1. Then we
make Ω0×Ω1 into a probability space by assigning it the pmf obtained by multiplying
f0 and f1:

f01(ω0, ω1) := f0(ω0) · f1(ω1).
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b) Suppose Ωi, i = 1, . . . , k are discrete probability spaces with pmfs fi. Let X :=
Ω1 × Ω2 × · · · × Ωk and let g : X → [0, 1] be defined by

g(ω1, ω2, . . . , ωk) := f1(ω1) · f2(ω2) · · · fk(ωk).

Then X with the probability measure induced by g is called the product of the spaces
(Ωi, fi).

c) If in Part b) all the (Ωi, fi) are equivalent to (Ω, f), we denote the product (Ω, f)k,
or if the f is understood, Ωk.

Problems.

1. True or false? Picking a card at random when all cards are equally likely is equivalent
to picking a suit at random, with all suits equally likely and then picking a rank at
random, with all ranks equally likely.

2. If we remove all the face cards from the deck, do the remaining cards have a natural
product structure?

3. If we remove a single card from the deck, do the remaining cards have a natural
product structure?

4. Suppose Ω = {H, T}, with the pmf f(H) = p, f(T ) = 1 − p. How many elements in
Ω2? In Ω3? In Ωk? Show that Ωk with its associated pmf can be used to model the
process of flipping a biased coin k times. List the elements of Ω4 and compute the
value of the product pmf at each one.

Quotients. To partition a set means to select a family of subsets so that no two have
any points in common and so that all together they contain every element of the set. For
example, here is a partition of {0, 1, 2, 3, 4, 5, 6, 7}:

{
{0}, {1, 2, 4}, {3, 5, 6}, {7}

}
.

Definition. Suppose Ω̂ := {Y1, . . . , Yk} is a partition of Ω andf is a pmf on Ω. Define a

pmf f̂ on Ω̂ by f̂(Yi) =
∑

{ f(y) | y ∈ Yi}.

Problem. Show that f̂ is indeed a pmf.

Example. Let Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. Partition Ω
into the sets Y0 = {HHH}, Y1 = {HHT, HTH, THH}, Y2 = {HTT, THT, TTH}, Y3 =

{TTT}. Let f be the uniform pmf on Ω, so f(ω) = 1/8 for all ω ∈ Ω. Then f̂(Y0) = 1/8,

f̂(Y1) = 3/8, f̂(Y2) = 3/8, f̂(Y3) = 1/8.

Example. Let Ω = {0, 1, 2, 3, 4, 5, 6}, with pmf f(ω) = 1/6. Then Ω2 can be used to
represent the result of throwing a pair of dice:

1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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Partition Ω2 so that Yn = { (i, j) | i + j = n}. Then f̂(Y7) = 6/36, while f̂(Y2) = 1/36.

Subspaces. Suppose that Ω is a set with pmf f . Let A be a subset of Ω. The restriction
of f to A is a pmf only if P (A) = 1. If P (A) 6= 0, we can correct this problem by dividing
by P (A).

Definition. If A ⊆ Ω, define fA(ω) := f(ω)/P (A). A together with the probability
measure on A induced by fA is said to be conditioned on A. The pmf fA(ω) is sometimes
denoted f(ω|A). The probability measure induced by fA denoted PA( ) or P ( |A).
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