
Lecture 20. Bivariate Distributions

This lecture is related to the material in Chapter 8, section 1.

Motivation.

The iLEAP/LEAP test is a standardized test given to all Louisiana public schools every
April. In each grade, there are about 40,000 tested. There are only finitely many possible
scores on these tests; each score is an integer between 100 and 500.

Let Ω be the set of all the students who took the 7th-grade math iLEAP in 2009 and the
8th-grade math LEAP 2010. If we choose a student at random from Ω, then each has
equal probability—of about 1/40,000—of being chosen. If X is the score of the random
student on the 7th-grade test, then P (X = x) is the proportion of students who scored x
on that test. Thus, Ω can be viewed as a probability space with random variable X (the
7th-grade score). There is also the 8th-grade score. If Y is the score of a random student
on the 8th-grade test, then P (Y = y) is the proportion of students who scored y on that
test.

Now, suppose we measure both scores at the same time. Then p(x, y) = P (X = x &Y = y)
can be interpreted as the proportion of students who scored x on the 7th-grade test and

scored y on the 8th-grade test. We not expect to be able to deduce the joint distribution
from the distribution of the scores of the 7th-grade tests (the pmf pX(x) = P (X = x))
and the distribution of the scores of the 8th-grade tests (the pmf pY (y) = P (Y = y)),
since kids who do well in 7th grade typically also do well in 8th-grade. Even if we know
the proportion of students getting each possible 7th-grade score (that is, even if we know
the pX(x)) and we know the proportion of students getting each possible 8th-grade score
(that is, even if we know pY (y)), we do not know the joint pmf p(x, y).

It is only in the case that we know X and Y to be independent that we can deduce the
joint pmf p(x, y) from the two, so-called, marginal pmfs PX(x) and PY (y). In the case
that X and Y are independent,

p(x, y) = pX(x)·Y (y).

This equality will fails to the extent there is some influence on one score on the other.

We will return to the topic of independence in the next lecture. In the present lecture, we
do little more than establish basic notation.

The Discrete Case

Definition. Let Ω be a discrete probability space. Let X : Ω → R and Y : Ω → R be two
real-valued random variables. The joint probability mass function for the variables X and

Y is the function
p(x, y) := P (X = x &Y = y).

Let A be the set of possible values of X and let B is the set of possible values of Y . Then
the values of p(x, y) can be depicted in a table with rows labelled by the elements of A
and columns labelled by the elements of B. (See the example below.)
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The row and column sums give the so-called marginal probabilities. If a ∈ A and b ∈ B:

pX(a) := P (X = a) =
∑

y∈B

p(a, y);

pY (b) := P (Y = b) =
∑

x∈A

p(x, b).

Example. Suppose Ω = {α, β, γ, δ, ǫ}, with p(α) = 1/15, p(β) = 2/15, p(γ) = 3/15,
p(δ) = 4/15, and p(ǫ) = 5/15. Suppose

X(ω) =

{

1, if ω ∈ {α, ǫ};
2, if ω ∈ {β, γ, δ};

and

Y (ω) =







1, if ω ∈ {α, γ};
2, if ω ∈ {β, δ};
3, if ω = ǫ.

We can represent the joint probability mass function in a table, as follows:

Y = 1 Y = 2 Y = 3 row sum
X = 1 1/15 0 5/15 6/15
X = 2 3/15 6/15 0 9/15

column sum 4/15 6/13 5/15 15/15

Facts about Expectation.

The expectations of X and Y may be computed as follows:

E(X) =
∑

x∈A

x P (X = x) =
∑

x∈A

x

(

∑

y∈B

p(x, y)

)

=
∑

x∈A

∑

y∈B

x p(x, y),

E(Y ) =
∑

y∈B

y P (Y = y) =
∑

y∈B

y

(

∑

x∈A

p(x, y)

)

=
∑

y∈B

∑

x∈A

y p(x, y).

Fact. Suppose h : R
2 → R is a function of two variables. Let Z = h(X, Y ). Then

E(Z) = E(h(X, Y )) =
∑

x∈A

∑

y∈B

h(x, y)p(x, y)

Fact. E(X + Y ) = E(X) + E(Y ). (See p. 315.)
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The Continuous Case

This is a natural generalization of the discrete case. Suppose Ω be a continuous probability
space. Let X : Ω → R and Y : Ω → R be two real-valued random variables. The joint

probability density function for the variables X and Y is the function f(x, y) such that

P (a < X < b & c < Y < d) =

∫ b

a

∫ d

c

f(x, y) dy dx.

The densities of X and Y separately are called the marginal densities. They are denoted
fX(x) and fY (y) respectively, and they are related to the joint density by:

fX(a) =

∫

∞

−∞

f(a, y) dy,

fY (b) =

∫

∞

−∞

f(x, b) dx.

If h is a function of two variables, then Z = h(X, Y ) is a random variable. Its expectation
is:

E(Z) = E(h(X, Y )) =

∫

∞

−∞

∫

∞

−∞

h(x, y) f(x, y) dy dx.
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