Lecture 3. Combinatorial Constructions

Many probability spaces arise from combinatorial structures.

Permutations. If a numbered set of n items is rearranged in a new order (e.g., 123456
might be rearranged as 352461), there are n possibilities for the first element, n— 1 for the
second, n — 2 for the third, etc. Therefore the total number of possible rearrangements is

nl=n-(n—1)-(n—2)----- 3-2-1.

Fact 1. There are n! ways of arranging n distinct elements in order.

Consider an experiment consists in rearranging an n-element set randomly in such a
way that all rearrangements are equally probable. We can model this with a probability
space in which the n! rearrangements are the outcomes and each has an assigned probability
mass of 1/n!. For example, after many shuffles of a deck of cards there is no rearrangement
that is more probable than any other. Thus, each card sequence has a probability of 1/52!.
(52! is about 8 x 10°7.)

If k elements are taken from an n-element set in order, without replacement, there are
n possibilities for the first choice, n — 1 for the second, n — 2 for the third, ... and n—k+1
for the k' choice. Therefore, the total number of ways of completing this task is

nl=n-(n—1)-(n—2)---- m—k+1)=——

Fact 2. There are (nf—'k), ways of selecting k elements in order from a collection of n
distinct elements.

For example, there are 52 - 51 - 50 = 132, 600 ways to be dealt a hand of three cards.
(Note that there are NOT 132,600 three-card hands, since each 3-card hand has 3! = 6
ways of being ordered and hence 6 ways of being dealt in order. This foreshadows what
we will say about combinations, below.)

Problem. What is the probability that a three-card hand contains an ace?

Solution. We work in the probability space of ordered three-card hands. We need to add
up the probability masses of the outcomes in the event consisting of all hands that include
an ace. Since all the hands have the same probability, we can find this probability by
counting the number of outcomes in this event and then multiplying by 1/132,600, this
being the probability of a hand. There are several ways to make the count. a) There are
51 - 50 hands that have the ace of spades as a first card. The same is true for the other
three suits, so there 4 - 51 - 50 hands that have an ace first. There are 48 - 51 - 50 cards
that don’t have an ace first, and of these, there are 48 -4 - 50 that get their first ace on the
second deal. Finally, there are 48 - 47 - 4 hands that get their first ace on the on the third
deal. Now, 4-51-50+448-4-50+4 48 - 47 -4 = 28,824. b) There is a much more elegant
way to count. The number of ordered hands that contain no ace is 48-47-46 = 103, 776.
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Therefore, the number of hands with and ace is 132,600 — 103, 776 = 28, 824. Either way
it’s figured, the probability of the even is

28, 824

Remark. The solution illustrates a valuable strategy: if X is a finite set of known
size, and A is a subset, then we may determine the number of elements in A by counting
directly, or by counting the number of elements of X that are not in A. Sometimes the
latter is much easier than the former. Similarly, if A is an event, then it may be much
easier to compute the probability that A does not occur than to compute the directly the
probability that it does. But the former determines the latter.

Problem. The letters of “MISSISSIPPI” are scrambled. What is the probability that
they still spell MISSISSIPPI?

Solution. There are 11 letters in the word, so there are 11! ways of scrambling them, each
with probability 1/11!. However, because some letters are repeated, some outcomes spell
the same word. To make this clear, we label the repeated letters:

M115152]253S413P1P214.
Then, a scrambling such as the following preserves the word:
MI45253115451[2P2P1[3.

There are 4! ways to scramble the Ss, 4! ways to scramble the I's and 2! ways to scramble
the Ps, making a total of 4! - 4! - 2! scramblings that leave the word unchanged. Thus, the
probability that the letters still spell MISSISSIPPI after scrambling is:

Ar-41-20 1
111 34650°

Combinations. Above, we found that there are n!/k! ways of selecting k elements from
and n-element set, provided that we count two selections as different when the order is
different. If we are only interested when the same items are selected with the order
ignored, then we need a different formula.

Fact 3. A set with n elements has ﬁlk), different subsets of size k.

Proof. This is a consequence of Facts 1 and 2. By Fact 2, there are (n%'k), ways of choosing

k elements in order. By Fact 1, there are k! ways of ordering k elements. That is to say,
the same k elements may be chosen-in-order k! different ways. /]]]/

Ezxample. Within each line in the array below, you see the same 3 letters from {a, b, ¢, d, e},
arranged in each of the six possible ways. There are 60 ways of choosing 3 letters from
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{a,b,c,d, e} in order. But there are only 10 distinct subsets of {a,b,c,d,e}.

abc acb bac beca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
becd bed c¢bd cdb  dbe dcb
bce bce cbe ceb ebc ech
bde bde dbe deb ebd edb
cde cde dce dec ecd edc

Notation. (}) (pronounced “n choose k) is the following number:

ny n! _n n—1 n—2 n—k+1
k)" kl(n—k)! 1 2 3 ko

(Z) is the number of k-element subsets of and n-element set.

Problem. There are r red beads and g green beads in a jar. We remove k beads. What
is the probability that all £ are the same color?

Solution. There are (Hk'g) subsets of the set of all beads. Each is equally probable, so the

mass assigned to each is (r—]‘,{:g)_l There are (;) sets that are all red and (g) that are all

green, so the number of outcomes in the event we are interested in is (2) + (i) Thus, the

probablity of the event is:
r! !
W)+ @) mom tEgm _ rr =1 (r—k+ D +g(g—1)---(g—k+1)

("tey E%%%m B (r+g9)(r+g—1)--(r+g—k+1)

Assignement. TBA



