
Lecture 6. Bayes’s Formula

Review

1. If A is an event such that P (A) 6= 0 and B be another event, then the conditional

probability of B given A is:

P (B|A) =
P (A ∩ B)

P (A)
. (1)

2. We say A and B are independent if

P (A ∩ B) = P (A)P (B).

3. If A and B are events, we may put the probabilities of the events definable from A
and B in a table, as follows:

B Bc +

A x = P (A ∩ B) y = P (A ∩ Bc) x + y = P (A)
Ac z = P (Ac ∩ B) 1 − x − y − z = P (Ac ∩ Bc) 1 − x − y = P (Ac)
+ x + z = P (B) 1 − x − z = P (Bc) 1

Then P (B|A) = x
x+y

. If P (B) 6= 0, then P (A|B) = x
x+z

.

Bayes’s Formula

If A and B both have non-zero probability, then equation (1) tells us:

P (A|B)P (B) = P (A ∩ B) = P (B|A)P (A).

From this, we get Bayes’s Formula (simple form):

P (A|B) =
P (B|A)P (A)

P (B)
. (2)

Suppose A1, A2, · · · , An are disjoint and B ⊆ A1 ∪ A2 ∪ · · · ∪ An. We have the following

Decomposition formula:

P (B) = P (A1 ∩ B) + P (A2 ∩ B) + · · · + P (An ∩ B)

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An).
(3)

From (2) and (3) we get

Bayes’s Formula: If A1, A2, · · · , An are disjoint sets and B ⊆ A1 ∪ A2 ∪ · · · ∪ An, then
for any k ∈ {1, 2, . . . , n}:

P (Ak|B) =
P (B|Ak)P (Ak)

∑n

i=1
P (B|Ai)P (Ai)

.
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Comment. The simple form of Bayes’s formula is usually adequate, if you are prepared to
think a bit. The full form can often be applied directly (and more thoughtlessly). Here is
an example that illustrates this.

Example/illustration

A child has run away. It is known that she must be in one of three locations, and the
probability of being in region i is estimated to be αi. (Note that α1 + α2 + α3 = 1.) It
is also estimated that if the child is in location i, then a search of that location will fail to

find her with probability βi, i = 1, 2, 3. If a search of region 1 has failed to find her, what
is the probability that she is in that region anyway?

Solution 1. Let Ai be the event that she is in region i. Let B be the event that a search
of region 1 is unsuccessful. We are asked to find P (A1|B). Now,

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3)

=
β1α1

β1α1 + α2 + α3

=
α1β1

α1β1 + (1 − α1)
.

Solution 2. We can use a 2-way table to solve this, as follows. Let A1 be the event that
she is in region 1, and let B be the event that a search of region 1 is unsuccessful. Then

B Bc +

A1 α1β1 ? α1

Ac
1 ? 0 ?

+ ? ? 1

The explanations for the entries are as follows:
• α1 = P (A1) by assumption.
• β1 = P (B|A1) = P (B ∩ A1)/P (A1) by definition of β1, so α1β1 = P (A1 ∩ B).
• Bc is the event that a search of region 1 is successful, but this cannot happen if the

child is not in region 1. This accounts for the 0.
Now, the other boxes are easily filled in:

B Bc +

A1 α1β1 α1(1 − β1) α1

Ac
1 1 − α1 0 1 − α1

+ α1β1 + (1 − α1) α1(1 − β1) 1

Hence,

P (A1|B) =
P (A1 ∩ B)

P (B)
=

α1β1

α1β1 + (1 − α1)
.

Homework Problem. If regions 1 and 2 have been searched without success, what is
the probability that the child is in region 3?
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Seeing independence in two-by-two tables

We have seen that three of the entries in a two-by-two table may suffice to determine all
of them, but even when we choose three positions that suffice, we are not free to fill them
in any way we choose. For example, P (A), P (B) and P (A∩B) tosuffice determine all the
entries, but P (A ∩ B) must be less that or equal to the minimum of P (A) and P (B). In
this case, this is the only restriction, so if we have 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 in the following
table, and 0 ≤ z ≤ min{x, y}, then the rest of the entries are between 0 and 1. (Note that
we are using x, y and z to denote different entries than we did previously.)

B Bc +

A z x − z x
Ac y − z 1 − x − y + z 1 − x
+ y 1 − y 1

That the triple (x, y, z) can be at any position in the part of the unit cube illustrated in
Notebook 6, so each point in this pyramid corresponds to a table. A and B are independent
if and only if z = xy. Thus, the tables corresponding to independent events lie on the
surface defined by this equation. This is also illustrated in Notebook 6.

Homework 3.2: 9. What is the probability that no hearts are dealt before the ace of
spades?

There are two ways to approach this problem.

Solution 1. For the sample space, we take the set of all 52! ways of dealing 52 cards. Let
E be the event that the ace of spades occurs before any hearts. Then E is the disjoint
union of the event Ek, where

Ek := {exactly k non-hearts have been dealt when the ace of spades is dealt}.

Now,

#(E0) = 51!

#(E1) = 38 · 50!

#(E2) = 38 · 37 · 49!

...

#(Ek) = 38 · 37 · · · (39 − k)(51 − k)!

#(E38) = 38 · 37 · · · (1) · 13!

#(E39) = 0

Thus,

#(E) =
38
∑

k=0

(

38

k

)

k!(51 − k)!,
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and

P (E) =

38
∑

k=0

(

38

k

)

k!(51 − k)!/52! =
1

14
.

Solution 2. Let the sample space consist of all ways of dealing 52 cards. Now, we can think
of each element of this space as consisting of 14 designated cards—namely the 13 hearts
and the ace of spades—laid down in some order, with the remaining cards interspersed in
some manner. Regardless of the order of the 14, there are the same number of ways of
interspersing the remaining cards, so we have a partition of sample space into 14! events,
each of equal probability. This shows that we may, in fact, discard the original sample
space, and use work the problem in terms of a sample space consisting of the 14! ways
of ordering the hearts and the ace of spades. Now the ace comes in the first position in
exactly 1/14 of the elements of this space. This is an elegant solution, and it shows many
other things about the experiment as well. For example, the probability that the ace of
spades is dealt after exactly 3 hearts is 1/14.
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