
Lecture 7. More on Independence. Random Variables

More on Independence.

Comment . On the quiz last Thursday, more than half the class asserted incorrectly
that“independent events are events that have no outcomes in common.” So, let us re-
view this idea.

Two events A and B are said to be independent if the occurrence of one has no effect
on the probability of the other. In terms of conditional probability, we may interpret the
independence of A and B to mean P (A) = P (A|B): the probability of A is the same as
the probability of A given B. But we might also interpret it to mean P (B) = P (B|A).
Which is the right way? Fortunately, if P (A) and P (B) are both non-zero:

P (B) = P (B|A) ⇐⇒ P (B) =
P (B ∩ A)

P (A)

⇐⇒ P (A)P (B) = P (B ∩ A)

⇐⇒ P (A) =
P (A ∩ B)

P (B)

⇐⇒ P (A) = P (A|B)

Thus, either of these conditions implies the other. To make the symmetry of the indepen-
dence relation obvious, we use the condition P (A)P (B) = P (B ∩A) as the definition. Let
us repeat it:

Definition. Events A and B are said to be independent if P (A)P (B) = P (B ∩ A).

This definition has the advantage that it does not mention conditional probabilities, though
of course it implies that the conditional probabilities are equal to the unconditioned ones,
which was the idea that motivated the concept of independence. It has the advantage that
we don’t need to worry if the probability of one of the events happens to be zero. The
definition implies that an event of probability zero is independent of any other event.

Caution. Two events are said to be mutually exclusive if they have no outcomes in common.
If A and B are mutually exclusive, then A∩B is the empty event, and therefore P (A∩B) =
0. Accordingly, if A and B have non-zero probability and are mutually exclusive, then
they are not independent. It is a common for learners to assume erroneously that the two
concepts are the same.

Example. Example 1.12 of our textbook reads: “An elevator with two passengers stops at
the second, third and fourth floors. If it is equally likely that a passenger gets off at any
of the three floors, what is the probability that the passengers get off at different floors.”

Comment. Let’s say the passengers are Mary and Sarah. The problem stipulates that
Mary has a 1/3 probability of getting off at the 2nd floor, a 1/3 probability of getting off
at the 3rd floor and a 1/3 probability of getting off at the 4th floor. The same is true
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of Sarah. The sample space consists of all the ways the two of them may get off. The
outcomes, therefore, correspond to the cells in the following table.

Mary

Sarah

2 3 4 +

2 1/3
3 1/3
4 1/3
+ 1/3 1/3 1/3 1

Here, the cells in the first row are the elements in the event “Mary gets of on the second
floor.” The problem states that this event has probability 1/3, and this is indicated in the
margin, at the end of the row. The same is true of the other floors at which Mary may
exit. Similarly, the columns correspond to the floors at which Sarah may exit, and the
event of her exiting at any one of the three floors is the same. The event of them exiting at
the same floor consists of the cells on the diagonal from the upper left to the lower right.
We must figure out how to assign probability masses to these cells, and then add them up.
Unfortunately, the problem does not give us enough information to do this, as we see from
the following 3 different “solutions,” each based on a different assumption that is perfectly
consistent with the way the problem was stated.

Solution 1 . Mary’s last name is Landrieu, and Sarah’s is Palin. No way will they get off
at the same floor. We must fill the chart in as follows:

Mary

Sarah

2 3 4 +

2 0 1/6 1/6 1/3
3 1/6 0 1/6 1/3
4 1/6 1/6 0 1/3
+ 1/3 1/3 1/3 1

Note that the events “Mary gets off at 2 and “Sarah gets off at 2” have no outcomes of
non-zero probability in common, so they are essentially mutually exclusive.

Solution 2 . Mary’s last name is Smith, and so is Sarah’s. Sarah, in fact, is Mary’s infant
daughter. Since Mary is carrying Sarah in her arms, the two are certain to get off at the
same floor. We must fill the chart in as follows:

Mary

Sarah

2 3 4 +

2 1/3 0 0 1/3
3 0 1/3 0 1/3
4 0 0 1/3 1/3
+ 1/3 1/3 1/3 1
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Note that the events “Mary gets off at 2 and “Sarah gets off at 2” contain exactly the
same outcomes of non-zero probability, so they are essentially the same event.

Solution 3 . Mary and Sarah are absolute strangers. The event of Mary getting off at her
floor is independent of the event of Sarah getting off at hers. Using the multiplication rule
in the definition of independence, we must fill in the table as follows:

Mary

Sarah

2 3 4 +

2 1/9 1/9 1/9 1/3
3 1/9 1/9 1/9 1/3
4 1/9 1/9 1/9 1/3
+ 1/3 1/3 1/3 1

The event of them getting off at the same floor has probability 1/9 + 1/9 + 1/9 = 1/3.

Random Variables: Definition, comments, examples and problems

Definition. A real-valued random variable on a discrete probability space is a function
from that space to the real numbers.

It is common to use the symbol X to denote a random variable. When one says, “X
is a random variable,” one has a probability space Ω in mind and a real-valued function,
named X , on that space. To state in symbols that X is a function from Ω to R, one writes
X : Ω → R.

As with the terms “experiment,” “outcome,” “sample space” and “event,” the idea of
a random variable is intended to transpose an intuitive notion into a rigid mathematical
framework, where one can work with meanings that are precise, stable and agreed upon by
all competent users of the theory of probability. As with these other concepts, there is an
intuitive notion at the origin. Consider a randomly varying quantity, such as the number of
white cells in a microliter of blood, the number of defective items coming off an assembly
line in an hour or the weight of a truck arriving at a particular weigh station. Such a
quantity varies randomly from occasion to occasion, but over many measurements certain
regularities are perceived. Certain counts or weights appear more frequently, others less,
and for each number x, there is, in the long run, a certain proportion of measurements that
are less than or equal to x. The variation can be modeled by assuming that the number
x is the value of a function on a probability space. The relative frequency with which
numbers less than or equal to x occur is modeled as the probability of the event

{ω ∈ Ω | X(ω) ≤ x}.

We mentioned previously that in a probability space that is not discrete, some subsets
may fail to have probability measures. For this reason, an additional stipulation is needed
to define the concept of random variable in the non-discrete case: we require that for any
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real numbers a < b, the set {ω ∈ Ω | a < X(ω) < b } must have a probability measure.
In many basic applications, this requirement is automatically met. But attention to this
detail is critical in the mathematical foundations of the theory. For the time being, we
will be speaking only of discrete random variables, so we will postpone further discussion
of this issue.

Example 1.

An experiment consists in rolling a die 5 times and recording the 5 numbers rolled. The
outcomes are the numbers that appear, in the order in which they appear. For example,
63435 denotes the outcome in which the first roll yielded a 6, the second a 3, etc. For
each outcome ω, let X(ω) be the sum of all the numbers rolled. Then X is a real-valued
function defined on the sample space of this the experiment, and hence it is a random
variable. An equation such as X = 21 defines an event:

{ω ∈ Ω | X(ω) = 21 }.

This event contains 63435, since X(63435) = 21, but it does not contain 64433, since
X(64433) = 20. The probability of this event is denoted P (X = 21). In this example,
there are 65 = 7776 equally-likely outcomes, and 540 of them (see Mathematica Notebook
7) sum to 21. Thus,

P (X = 21) = 540/7776 ≈ 0.0694444.

Problems 1.

Examine the computations related to this problem in the Notebook 7. The note-
book contains a table showing the values of P (X = n), as well as a graph of these
probabilities as a function of n.
a) How would you graph the function X itself? What does the graph look like?
b) Make a table showing the number of outcomes in the event X = n for each

n ∈ {5, 6, . . . , 30}. How is this related to the graph of f(n) := P (X = n)?
How is it related to the graph of X?

c) Suppose the problem is modified by rolling the die 6 times instead of 5. make
a table of the values of P (X = n) for n ∈ {6, 7, . . . , 36}, and graph these
probabilities as a function of n.

Example 2.

An experiment consists rolling a die over and over until a 3 is rolled. The sample space Ω
of this experiment is the set of all sequences ω = a1a2 · · ·an−13 in which each ai, i < n, is
in the set {1, 2, 4, 5, 6}. (Note the missing 3.) Let X(ω) denote the length of ω:

X(3) = 1;

X(a13) = 2 (a1 ∈ {1, 2, 4, 5, 6});

X(a1a23) = 3 (a1, a2 ∈ {1, 2, 4, 5, 6});

etc.
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In this example, P (X = 1) = 1/6, since there is a probability of 1/6 that the first roll will
result in a 3. P (X = 2) = (5/6)(1/6) = 5/36, since there is a probability of 5/6 that the
first roll will NOT result in a 3 and a probability of (1/6) that the second roll will. In
general,

P (X = n) = (5/6)n−1(1/6).

Problems 2.

a) The outcomes in this probability space are not equally likely. Letting f :
Ω → [0, 1] denote the pmf, explain why f(ω) = (1/6)X(ω).

b) Let g(n) := P (X = n). Show that g is a pmf on the set {1, 2, 3, . . .}.

Example 3.

An urn contains n beads, and s of them are special. An experiment consists in taking k
beads. Each outcomes ω is a k-subset of the n-set of all beads, so there are

(

n

k

)

outcomes,
all equally likely. Let X(ω) denote the number of special beads in ω. Let x be an integer
in [0, k]. We have previously calculated P (X = x), using the following reasoning: there
are

(

s

x

)

ways to draw x of the s special beads and
(

n−s

k−x

)

ways to draw k − x of the n − s
non-special beads. We multiply these two numbers to count the number of ways of drawing
k beads of which x are special. Then we form the ratio to the total number of outcomes
to make this a probability. Thus:

P (X = x) =

(

s

x

)(

n−s

k−x

)

(

n

k

) .

Problems 3.

a) In a blank Mathematica notebook, define a Mathematica function that cal-
culate f(x, n, s, k), the probability of getting x special beads, given that
k beads are taken from a jar containing n beads, of which s are special.
Note that in this problem, we are dealing with a family of different proba-
bility spaces, which vary with the parameters n, s, and k. (Hint: Begin:
f[x ,n ,s ,k ]:=)

b) Using the function you have defined, find P (30 < X ≤ 40) if X is the number
of special beads in a sample of size 100 from a jar containing 1000 beads of
which 250 are special.
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