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0. Introduction

Ratio and proportion is an ancient topic that is treated in great detail in Euclid’s Elements
(300 B.C.). It has been a part of the school curriculum since the earliest “modern” text-
books. For example, Dilworth’s Schoolmaster’s Assistant (1796) includes a description of
the so-called “Rule of Three”, which directs one to find the fourth term in a direct pro-
portion by muliplying the second and third terms and dividing by the first—a skill that
merchants would use frequently. (If 12 loaves cost $15, how much will 20 cost?) Today,
proportional reasoning studied for reasons that go well beyond its practical usefulness. It
is a transitional topic, coming between arithmetic and algebra.

Underlying the progression from proportional reasoning through algebra and beyond
is the idea of a function. One may view proportional reasoning as a point of entry to the
function concept. In its barest abstract mathematical definition, a function is a rule that
associates with each element of one set—called the domain—a unique element of another
set, which, in recent technical writing, has come to be called the “codomain”. Modern
mathematics shows that the concept of a function is a remarkably versatile, fundamental
notion. In school mathematics, the concept of a function is both an abstract mathematical
idea and also a schema for organizing and structuring instruction. A collection of domain-
codomain pairs determined by a function is a kind of data set. It can be displayed as a
table or plotted as a graph. Because a function follows a rule, patterns determined by that
rule are almost always visible in the table or graph. The patterns can be described in words
or by equations, and they can be associated with concrete situations. The representations
that occur over and over in the mathematics curriculum—patterns, verbal descriptions,
equations, graphs and tables—all hang together about the function concept.
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1. Ratio, Rate and Proportion

It is useful to begin with some history. Euclid defined “ratio” as follows:

A ratio is a sort of relation in respect of size between two magnitudes of the same
kind. (Elements, Book V, Definition 3.)

For Euclid, a ratio was a direct comparison between magnitudes (e.g., lengths, areas,
volumes, etc.) No measuring was involved. This is why he required the magnitudes
compared to be “of the same kind”. (How would you compare a length with an area, for
example, without measuring?)

In modern times, we typically measure the magnitudes we encounter. (Measurement
itself is a deep idea—far deeper than most people assume. Some additional discussion of
measurement appears in Appendix C.) By means of measurement, we attach numbers to
all of them. Today, we conceive of a ratio as a comparison between two numbers obtained
by measuring two magnitudes of the same kind using the same unit. Often, a ratio is
expressed as a single number, namely the one obtained by dividing the measure of the first
magnitude by the measure of the second. This number is independent of the unit used.

By means of measurement, we can go beyond Euclid. We are able to compare any
two magnitudes without concern for their kind by comparing the numbers obtained by
measuring each with some selected unit. A comparison like this is called a “rate”. When
describing rates, we must communicate the kind of measure and the units used, of course.

Comparing by counting. As mentioned in the Introduction, one pedagogical strategy
of the Louisiana Comprehensive Curriculum is to introduce abstract ideas by examining
them in concrete contexts. Perhaps the most concrete class of instances of the ratio concept
occurs in the comparison of numbered collections of objects such as beans, pennies, blocks
or tiles. To compare the sizes of two piles, count the number of objects in each pile. For
example, there might be 4 pebbles in the first pile and 7 in the second. Then we say that
the ratio of the sizes of the piles, the first to the second, is 4 : 7.

Other pile-pairs with the same ratio can be obtained by combining copies of the
original pair. To make this idea clear, you might make and display a model with some
specific counts, e.g., 4 and 7. Then build numerous pairs of piles, each identical with the
model pair. If you combine pairs by first lumping together some or all the piles with 4
objects and then lumping together the corresponding 7-objects piles, you get a pair of
large piles. The relative sizes of the two large piles is the same as the relative sizes of the
components. You can divide each of the large piles in the same way—in half, or in thirds
or quarters or take equal portions of each. The relative sizes of corresponding partial piles
are the same. Pairs created this way are said to be proportional.

Ratios and rates in general. As we suggested above, ratios and rates are numbers
that are used to describe the relationship between measured magnitudes. Thus, the basic
operation involved in finding ratios and rates is to measure and divide. Suppose we have
two magnitudes A and B. If we measure A and B with appropriate units, we get two
numbers. They represent properties of A and B. (The numbers and their meanings
depend, of course, on the units used. Are they miles? Hours? Minutes?) If we divide
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the number that goes with A by the number that goes with B, we get a new number that
shows something about the relationship of A to B. Like the measurements, this number
and its meaning also depend, in general, on the units used.

Ratio is a special case. If A and B are of the same kind and the same unit is used for
measuring both is the same, then the choice of unit does not matter. The number we get
upon division is the same, regardless of the unit chosen, provided the same unit of measure
is used for both A and B. We call this number the ratio of A to B (with respect to the
magnitude of interest). Example. Suppose A is a trip from Baton Rouge to El Paso, Texas
and B is a trip from El Paso to Las Cruces, New Mexico. The first trip measures 1019
miles and the second measures 47 miles. If we divide the 1019 miles in trip A by the 47
miles in trip B, we get 1019/47, or about 21.68. This number tells us the number of miles
in trip A for each mile in trip B. It is the ratio of the length of trip A to the length of trip
B, or the ratio of A to B with respect to length. We could have measured both distances
in kilometers or feet or inches. The ratio of the length of trip A to the length of trip B
would be the same. Note that we could have considered other features of the trips: the
time each took, the amount of gas or the cost. We could have found the ratio of the trips
with respect to cost, the ratio of the amount of gas used in each, etc. These might all be
different.

Rates are more versatile. We can divide one measurement by another even when the
kinds of magnitude involved and the units used to make the measurement are different. We
reserve the term “ratio” for a comparison of like magnitudes and we use the term “rate”
for a comparison of unlike quantities (e.g. miles per hour). In this case, it is essential
to communicate the units that were used for the measurement. Phrases such as “miles
per hour”, “cost per pound”, “mass per cubic centimeter” are commonly used. Example.
Suppose A is the distance we drove one afternoon and B is the time it took. Let’s say our
trip measured 72 miles and the time was 54 minutes. If we divide the 72 miles by the 54
minutes we get 72/54 miles per minute or more simply 4/3 miles per minute.

In both cases—ratios and rates—we occasionally forgo the division and record the
numbers and their meanings themselves. One might say, for example that the ratio of the
lengths of the two trips A and B was 1017 : 47. In the same vein, the meaning of saying
my speed was 72 miles per 54 minutes is perfectly clear, albeit unusual.

We would like to suggest some rules for clear understanding and clear communication.
When using measurements, we always label our numbers (as pounds or inches or dollars or
whatever is appropriate) in order to show what they mean. Without labels, the numbers
mean nothing. The same is true when talking about rates. The usual labels employ the
word “per”. When speaking of ratios, in contrast, it is not important to quote a unit, but
it is essential to say whether the ratio is with respect to length or height or weight, etc.. It
would be nonsense to say that the ratio of John to Tom was 1.2. Is this a ratio of weights?
Heights? Ages? Income? Or what?

Similar triangles. Suppose we have two triangles: �A1B1C1 and �A2B2C2. Each
side of the first triangle has a ratio (with respect to length) with the corresponding side of
the second: A1B1 : A2B2, B1C1 : B2C2, C1A1 : C2A2. In each pair, we have a side from
the first triangle and the corresponding side form the second. If all three of these ratios
are the same, we say the triangles are similar. In this case, the common value is a scaling
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factor.

Functions associated with ratios and rates. In many situations we are concerned not
with just one pair of measurements and the associated ratio (or rate), but with many pairs
that come in a class. Thinking about ratios and rates in terms of such classes links ratios
and rates to functions.

Imagine gathering data on the height of various objects and the lengths of their shad-
ows. For each pair, you can form the ratio, “length of shadow divided by height”. These
ratios will vary, depending on the time of day that the measurements were made. For pairs
collected at noon the ratio is small since the shadow is short. For those pairs gathered at
dusk, the ratio is large, since the height is then much less than the length of the shadow.
Thus, in general, there will be no way to predict the length of the shadow from a knowledge
of the height of the object only. However, if you measure numerous heights and shadows
on flat land at the same time of day, then the ratios will all be the same. In this case,
if you know the ratio of one pair you know the ratio of all the other pairs. Knowing the
common ratio enables you to determine the shadow length from the height. It forms a rule
relating the two measurements. Shadow length, under these circumstances, is a function
of height.

For another example—this time pertaining to rates—suppose you examine the receipts
obtained when people buy gas for their cars. Each slip shows a number of gallons purchased
and a total paid for gas (excluding tax). For each slip you may compute a rate, the price
per gallon. If you look at numerous receipts acquired by different drivers at the same gas
pump on the same day, you will see the same rate. In this case, knowing this one rate
enables you to calculate the total paid from the number of gallons purchased. The total
paid is a function of the number of gallons purchased. On a different day, or at a different
pump, the function that relates number of gallons purchased to total paid may be different.
This, of course, is just a complex way of saying that the relationship of what you purchase
to what you pay depends upon the price per gallon, which may vary from day to day or
dealer to dealer. (This paragraph is intended to illustrate the use of the mathematical
language in a situation that you are familiar with. The language seems clumsy and long-
winded in familiar situations. But in new or unfamiliar situations, it provides clarity. Of
course, to believe this, you probably need to experience it.)

Further examples abound. When you change the size of a recipe, the amount of each
ingredient changes by the same factor. That is, if there are 3 times as many eggs in the
new recipe, then there is also 3 times as much flour. The ratio of the amount of each
ingredient in the new recipe to the amount in the original is the same. For each ingredient,
there is an “old amount” and a “new amount”, and the new amount is obtained from the
old by the same rule. Or consider the pairs of measurements that arise when you enlarge
a photograph. The pairs involved here include a length measurement of some item in the
original photo and a length measurement of the same item in the new photo. All the linear
dimensions change by the same factor. That factor–often called the scaling factor—is the
ratio of each new length to the corresponding length in the old photo. For an example with
rates, if you move at a constant speed, then the rate of distance traveled to time elapsed
is the same for each portion of your trip. If you purchase different quantities of some item
at the same price per unit, then the amount purchased divided by the cost remains the
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same. In each case, there is a function.
Important examples arise with classes of similar triangles. Suppose we have numerous

triangles �A1B1C1, �A2B2C2, �A3B3C3, . . . that are all similar to one another. This
means, in particular, that for any i,

BiCi

B1C1
=

AiBi

A1B1
.

Now multiply both sides of this equation by B1C1. We get:

BiCi =
B1C1

A1B1
AiBi.

This shows that in each triangle, the length BiCi can be calculated from the length AiBi.
You multiply the latter by the ratio B1C1

A1B1
. Again, we have a function. If we divide both

sides of the last equation by AiBi, we get:

BiCi

AiBi
=

B1C1

A1B1
.

This common ratio is not a scaling factor, but a property of the triangle.
Yet more examples come in situations such as the following:

• Shopping: unit costs. (At one store, a dozen eggs cost $1.08. At another store, 6 eggs
cost $.53.)

• Travel: speed, gas mileage, cost of vehicle. (You travel 310 miles after filling up. To
refill the your tank, it takes 14.3 gallons.)

• Finance: interest rates on savings accounts, mortgages, and credit cards.
• Conversions: inches, feet, meters, etc.
• Recipes and mixtures.
• Geometry (both applied and theoretical). Stairs, shadows, similar triangles.

Proportional reasoning. Proportional reasoning, as a mental activity, involves recog-
nizing, creating, examining and representing one or more families of pairs of numbers that
have similar interpretations and exhibit the same ratio or rate. Interesting and sophisti-
cated activities often involve making multiple representations, transforming one represen-
tation into another or choosing an appropriate representation for a given purpose. Many
textbooks devote substantial amount of time to other problems of a more routine proce-
dural nature, such as determining a ratio (or rate) from a given pair of measurements or
determining what one of the numbers in a pair must be when the other is known and the
pair is known to belong to a family with a given ratio (or rate).
The most important representations are:
a) Verbal descriptions. We have already given a few examples.
b) Pictures, diagrams or models. There is a lot of variety here; see the activities in the

TEXTEAMS Proportional Reasoning Workshop.
c) Tables. Tables effectively convey several ideas that are important in proportional

reasoning. It is common to write the pairs as rows. The columns correspond to the
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roles occupied by the members of each pair. A table may have more than just two
columns, of course. One might want a column in which to write the ratio of each
pair (particularly if pairs in different ratios appear in the table). A table displaying
numerous pairs in the same ratio (or rate) exhibits many striking patterns. In such a
table, for example, if you make a new pair by adding or subtracting rows, it will have
the same ratio (or rate) as the other pairs in the table.

d) Graphs. By standard conventions, any pair of numbers corresponds to a point in the
coordinate plane, with the first number giving the x-coordinate and the second giving
the y-coordinate. Thus, a family number pairs corresponds to a collecting of points.
If the number pairs represent numerous instances of the same ratio (or rate), they lie
on a line that passes through the origin. The slope of the line is the ratio

e) Equations. As we have seen, in proportional reasoning we are always dealing with
equations of the form y = ax. Here, a represents the common ratio that occurs in a
class of proportional pairs.

In the Louisiana Comprehensive Curriculum, there are several important pedagogical
expectations related to functions:
A) The curriculum is divided into units. Each unit has a small number of explicit dom-

inant themes an a number of incidental themes. Specific classes of functions are
dominant themes in several units, and functions are incidental themes in many oth-
ers.

B) The curriculum takes students into situations that are close to common experiences in
which these functions are present; students learn to talk about functions in everyday
language first and gradually progress to specialized mathematical terminology.

C) Students learn multiple representations for functional relationships—e.g., verbal de-
scriptions, models, tables, graphs, equations—and they gain significant experience
translating from one representation to another and describing the systematic relation-
ships and analogies between different representations.

D) Students are expected to learn certain specialized language and procedures concerning
the functions of each type.

As in other curricula, there tends to be a progression. Proportional functions are intro-
duced and studied earlier than linear functions. Quadratic functions follow linear functions
and other increasingly complex functions come after that. The language and techniques
become increasingly modern as the functions become more complex. Much of the language
concerning proportion can be traced clearly back to Euclid; linear and quadratic functions
were not described by equations and graphed in the manner we presently do until the 17th

century, and much of the work that students do with these functions is intended to prepare
them for calculus.
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Appendix A: Functions.

A. Ways of representing functions
• By a table of data consisting of a family of input-output pairs. Generally, there

are infinitely many possible input-output pairs. A table can never show more
than a sample.

• By an equation, involving an independent variable (usually x) that stands for
input, and a dependent variable (usually y) that stands for output

• By a graph. In the coordinate plane, each number pair corresponds to a position.
You make the graph of a function f by darkening or coloring all the points
corresponding to the input-output pairs of f .

• By a colloquial description using words and/or diagrams.1

B. Kinds of functions. (In these illustrations, a, b, c, and d are constants; x and y are
the independent and dependent variables, respectively.)
• Constant: y = a.
• Linear: y = ax + b. (Proportional functions are linear functions of the form

y = ax.)
• Quadratic: y = ax2 + bx + c.
• Other. (For example, cubic functions are functions of the form y = ax3 + bx2 +

cx + d. Exponential functions are functions of the form y = bx, where b is a
positive constant.)

The linear and quadratic functions figure most prominently in the 6th − 10th-grade
curriculum.
C. Pedagogy.

• Before algebra, functions tend to be implicit in the curriculum. Proportionality
is an important topic in middle school. In algebra, students begin using termi-
nology and notation relating to functions. They see numerous examples of linear,
quadratic and exponential functions and study them in detail using the various
representations.

1 This is often the way a function appears in a problem. E.g., if you make cardboard
boxes 2 feet high, 3 feet from front to back and of variable width, and if they have double
thickness on the top and the bottom and single thickness on the sides, then the amount of
cardboard used is a function of the width. What is the largest possible width if no more
than 44 square feet of cardboard may be used?
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Appendix B: Proportional Relationships.

• A proportional relationship is a special kind of linear function. However, proportional
reasoning is used in a wide variety of settings in which functional nature of the concept
is not a major focus of attention. For example, in calculating the tip on a restaurant
bill, you may view the cost of food and beverage as input (independent variable) and
the tip as a dependent variable. Possibly the best setting for introducing proportional
relationships to students is by displaying and discussing proportional families. A
proportional family is a collection of pairs of magnitudes that all have the same ra-
tio2; for example, { (3, 7), (6, 14), (9, 21), . . . }. Proportional families arise in numerous
contexts in mathematics and in practical life.

• Proportional relationships can be described colloquially and by tables, equations and
graphs.

• In geometry, proportionality is seen in similar figures. In this context, two different
kinds of proportional families arise:
◦ If two figures are similar, then the pairs consisting of (1) the measure of any seg-

ment in the first figure followed by (2) the measure of the corresponding segment
in the second figure gives a proportional family. The entries in each pair have
the same ratio. From a functional point of view, you may regard the linear mea-
sures in the first figure as inputs and the corresponding measures in the second
as outputs.

◦ Given a whole family of similar figures, then the pairs consisting of (1) the measure
of a particular segment (say, the shortest side) in any figure followed by (2) the
measure of another particular segment in the same figure (say, the longest side)
gives a proportional family. Once again, entries in each pair have the same ratio.
The difference is that in the first instead, only two figures are considered, but all
parts are measured and compared. In the second, many figures are considered,
but in each only two parts are measured and compared. In the first instance, the
comparisons are between figures. In the second they are within figures.

2 We agreed to use Euclid’s definition of ratio: a relationship between like magnitudes
with respect to size. Unlike Euclid, we routinely associate numbers with ratios. Fractions
and percents are ways of expressing numbers.
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Appendix C: Measurement.

What does measurement mean? When we measure a magnitude A, we do two things:

1) we compare A to a standard U of the same kind—if A is a length, then U is
also a length; A might be your height and U a meter stick;

2) we somehow find a number that bears the same ratio to the number 1 as A
bears to U ; this is called the measure of A in units U .

Note that in explaining what measurement means, we must think of ratios in the same
way that Euclid did—namely as direct comparisons—for the ratio of A to U cannot be
treated as a number until after we measure. Therefore, in our explanation of what mea-
surement means, we need to understand how two ratios, viewed not as numbers but as
direct comparisons, can be the same. Euclid supplied a definition that solves this problem.
Definition 5 of Book V may be paraphrased as follows: the ratio of A to B is the same as
the ratio of C to D if, for all positive integers k and �, kA ≤ �B ⇔ kC ≤ �D. (Here kA
means the magnitude we get by putting together k copies of A.)

This explains the principle, but not the practical method. Let us examine the process
of measurement in detail. Suppose A and U are magnitudes. If we want to measure A with
U , then we might start out by asking how many times we can fit U inside of A without
overlaps. The idea of “overlaps” being somewhat vague, it would be more precise to ask
how many times we can subtract U from A until we are either left with nothing or with
something smaller than U . If U can be subtracted exactly 6 times (say) with nothing
left over, then we say the measure of A in units U is 6. If there is a remainder, then we
still have an estimate with error bounds. If U can be subtracted 6 times (say) with some
amount R that is smaller that U left over, then we say the measure of A in units U is more
than 6 but less than 7.

To get any additional information about the measure of A, we need to measure R.
We can learn nothing new about R by attempting to measure it with U . We already know
that R is smaller than U . We must compare R with a magnitude that is smaller than U .
To do this, we divide U into a number of equal magnitudes, and measure R with one of
these. When we are measuring in inches (i.e., when U is the standard inch), for example,
is usual to use 1/4ths or 1/16ths or 1/32nds of U , depending on the amount of accuracy
needed. In the metric system, on the other hand, it is customary to divide the unit into
10 equal parts.

Suppose we are using meters, and suppose we have found the length of A to be between
6 and 7 meters in the first step. We create a new unit U1 equal to exactly one tenth of
U and we measure the remainder with that. We might find that R is exactly 4 U1s. Or
we might find, perhaps that the remainder is longer that 4 U1s but not yet 5 U1s. Then
we conclude that the length of A is between 6.4 and 6.5 meters. Having subtracted 6.4
meters from A, we are left with a second remainder, R2. We subdivide U1 into ten equal
parts, each a hundredth of a meter long. We select one of these and call it U2. We use
U2 to measure the second remainder R2. If there is a still a remainder, we measure that
with thousandths. And so we continue with ten-thousandths, hundred-thousandths, etc.


