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Maximum likelihood

Tn previcus chapters we could easily construct estimators for various param-
oters of imterest because these parameters had a natural sample analogue:
expectation versus sample mean, probabilities versus relative frequencies, etc.
However, in some situations such an analogue does not exist. In this chap-
ter, a general principle to construct estimators is introduced, the so-called
mazimum likelihood principle. Maozimum likelihood estimators have certain
attractive properties that are discussed in the last section.

21.1 Why a general principle?

In Section 4.4 we modeled the number of cycles up to pregnancy by a ran-
dom variable X with a geometric distribution with (unknown) parameter p.
Weinberg and Gladen studied the effect of smoking on the number of cycles
and obtained ihe data in Table 21.1 for 100 smokers and 486 nonsmokers.

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 9 3 4 5 6 7 8 9 10 11 12 »i2
Smokers 26 16 17 4 3 ¢ 451 1 1 3 7
Nonsmaokers 193 107 55 38 18 22 7 9 5 3 6 6 12

Source: C.R. Weinberg and B.C. Gladen. The beta-geometric distribution ap-
plied to comparative fecundability studies. Biometrics, 42(3):547-560, 1986.

Is the parameter p, which equals the probability of becoming pregnant after
one cycle, different for smokers and nonsmokers? Let us iry to find out by
estimating p-in the two cases.
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What would be reagsonable ways to estimate p? Since p = P{X = 1), the law
of large numbers (see Section 13.8) motivates use of

_ number of X; equal t0 1

S

K

as an estimator for p. This vields estimates p = 29/100 = 0.29 for smokers and
p = 168/486 = 0.41 for nonsmokers. We know from Section 19.4 that 5 is an
unbiased estimator for p. However, one cannot escape the feeling that & is a
“had” estimator: 5 does not use all the information in the table, i.e., the way
the women are distributed over the numbers 2,3, ... of observed numbezs of
cycles is not used. One would like to have an estimator that incorporates all
the available information. Due to the way the data are given, this seems to be
difficult. For instance, estimators based on the average cannot be evalnated,
because 7 smokers and 12 nonsmokers had an unknown number of cycles
up to pregnancy {larger than 12). If one simply ignores the last column in
Table 21.1 as we did in Exercise 17.5, the average can be computed and yields
1/%93 = 0.2809 as an estimate of p for smokers and 1/Z474 = 0.3688 for
nonsmokers. However, because we discard seven values larger than 12 in case
of the smokers and twelve values larger than 12 in case of the nonsmokers, we
overestimate p in both cases.

In the next section we introduce a general principle to find an estimate for a
parameter of interest, the mezimum likelihood principle. 'This principle yields
good estimators and will solve problems such as those stated earlier.

21.2 The maximum likelihood principle

Suppose a dealer of computer chips is offered on the black market two batches
of 10000 chips each. Accarding to the seller, in one batch about 50% of the
chips are defective, while this percentage is about 10% in the other batch. Our
dealer is only interested in this last batch. Unfortunately the seller cannot tell
the two batches apart. To help him to make up his mind, the seller offers our
dealer one batch, from which he is allowed {0 select and test 10 chips. After
selecting 10 chips arbitrarily, it turns out that only the second one is defective.
Our dealer at once decides to buy this batch. Is this a wise decision?

With the baich where 50% of the chips are defective it is more likely that
defective chips will appear, whereas with the other batch one would expect
hardly any defective chip. Clearly, our dealer chooses the batch for which it is
most likely that only one chip is defective. This is also the guiding idea behind
the maximum likelihood principle.
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Set B; = 1 in case the ith tested chip was defective and R; = 0 in case it
was operational, where ¢ = 1,...,10. Then Rj,..., Ry are ten independent
Ber(p) distributed random variables, where p is the probability that a ran-
domly selected chip is defective. The probability that the observed data occur
is equal to

PRy =0,R2 =1,R3=0,..., R =0} =p(1 - p)°.
For the batch where about 10% of the chips are defective we find that
P(Ri=0,Ro=1,R3=0,...,Rp=0) = L2 9:0.039
-0\ 10 ’

whereas for the other batch
171N\ -
P(Ri=0,R;=1,Bs=0,...,Rio=0) = 5 (§> = 0.00098.

Sc the probability for the batch with only 10% defective chips is about 40
times larger than the probability for the other batch. Given the data, our
dealer made a sound decision.

QUICK EXERCISE 21.1 Which batch should the dealer choose if only the first
three chips are defective?

Returning to the example of the number of eycles up to pregnancy, denoting -
X; as the number of cycles up to pregnancy of the ith smoker, recall that

P(X;=k)=(1-p)*'p
and
P{X; > 12) = P(no success in cycle 1 to 12) = {1 — p)'%;

cf. Quick exercise 4.6. From Table 21.1 we see that there are 29 smokers for
which X; = 1, that there are 16 for which X; = 2, etc. Since we model the
data as a random sample from a geometric distribution, the probability of the
data~—as a function of p-—is given by

Lip) = C-P(x; = 1) . P(X; =) ... P(X, = 12)° - P(X; > 12)7
=C-p” - (-pp)** - (1 -p"9)° - (1))
= .pQS . (1 “‘P)SQQ-

Here C is the number of ;vays we can assign 29 ones, 16 twos, ..., 3 twelves,
and 7 numbers larger than 12 to 100 smokers.? According to the mazimum

likelihood principle we now choose p, with 0 < p < 1, in such a way, that L{p)

1
C = 311657028822819441451842682167854800096263626208350116504431153437280760832000000000.
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is maximal. Since C does not depend on p, we do not need to know the value
of ' explicitly to find for which p the function L{p) is maximal.

Differentiating L(p) with respect to p yields that

Li(p) = [931092(1 _ p)322 _ 322p93(1 _ p)321:[
= CpP(1 — p)*** 93(1 — p) — 322p]
= Cp*2(1 — p)®*(93 — 4115p).

Now L'(p) =0 p=0,p=1, or p = 93/415 = 0.224, and L(p) attains its
unique maximurm in this last point {check this!). We say that 93/415 = 0.224 s
the mazimum likelihood estimate of p for the simokers. Note that this estimate
is guite a lot smaller than the estimate 0.29 for the smokers we found in the
previous section, and the estimate 0.2809 you obtained in Exercise 17.5.

Quick EXERCISE 21.2 Check that for the nonsmokers the probability of the
data is given by H
L(p) = constant - p*™(1 — p)®%.

Compute the maximum likelihood estimate for p.

Remark 21.1 (Some history). The method of maximum likelihood es-
timation was propounded by Ronald Aylmer Fisher in a highly influential
paper. In fact, this paper does not contain the original statement of the
method, which was published by Fisher in 1912 [9], nor does it contain
the original definition of lkelihood, which appeared in 1921 {see [10]). The
roots of the maximum likelihood method date back as far as 1713, when
Jacob Bernoulli’s Ars Congectendi ([1]) was posthumously published. In the
eighteenth century other important coniributions were by Daniel Bernoulli,
Lambert, and Lagrange (see also [2], [16], and [17]). It is interesting to re-
mark that another giant of statistics, Karl Pearson, had not understood
Fisher’s method. Fisher was hurt by Pearsor’s lack of understanding, which
eventually led to a violent confrontation.

21.3 Likelihood and loglikelihood

Suppose we have a dataset 1,9, ..., Tn, modeled as a realization of a random
sample from a distribution characterized by a parameter #. To stress the
dependence of the distribution on @, we write

polx)

for the probability mass function in case we have a sample from a discrete
distribution and
fo(z)
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for the probability density function when we have a sample from a continuous
distribution. _

For a dataset z1,z2,..., %, modeled as the reslization of a random sample
Xy, ..., Xy from a discrete distribution, the maximum likelihood prineiple
now tells us to estimate & by that value, for which the function L(#), given by

ey =P(X1 =21,...,Xn = 2a) =palz1) - - pelzs)

is maximal. This value is called the maximum likelihood estimate of 8. The
function L(8) is called the likelihood function. This is a function of §, deter-
mined by the numbers 1, T2, . ., %Tn-

In case the sample is from a continuous distribution we clearly need to de-

fine the likelihood function L(4) in a way different from the discrete case (if

we would define L{#) as in the discrete case, one always would have that
L(#) = 0). For a reasonable definition of the likelihood function we have the
following motivation. Let fp be the probability density function of X, and
let £ > 0 be some fixed, small number. I# is sensible to choose # in such a
way, that the probability P() —e < Xy <21 +e, . 2 —e £ X <2y +2)
is maximal. Since the X; are independent, we find that

Ploy—e<Xi<m+e,... 0 -2 < X, Can +e)
=Pl —e< X1 <m+e) Plen—e< X, <z +e)  (211)
~ fa(z1) fo(za) - - folzn)(26)7,

where in the last step we used that (see also Equation (5.1))

Tite

Plz; —e< X; <z +e)= / folz)dz ~s 2e fo(x;).

Note that the right-hand side of (21.1) is maxima! whenever the function

folm) fo{z2)- - fo(zn) is maximal, irrespective of the value of . In view of
this, given a dataset z3,s,...,Zn, the likelthood function £.(0) is defined by

L8y = fa(z1) folzz) - - folmn)

in the continuous case.
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As an exam;jle, suppose we have a dataset z1,%a2,...,%, modeled as a Te-
alization of a random sample from an Ezp(A} distribution, with probability
density fanetion given by fa(z) =0if 2 < 0 and

Alz) =" for z>0.
Then the likelihood is given by
LX) = falz) falme) - falzn)

_ )\ef)‘:cl : /\ef)\:z:g . ‘)\EiAIn

— A" e-)\(m1+mz+-~~+.’cn)

To obtain the maximum likelihood estimate of A it is encugh %0 find the
maximum of L(A). To do so, we determine the derivative of L(A):

d CATR a = AT
= — A" Limym . D
d}\L(A) nA" e 1 i=§ 1 x; je 1

. - A ki
— 7e—1 —)\Zi: i 1= i
n()\ a 3 ( - 2%,))

imz]
We see that d (L{A)) /dx = Q if and only if
1—-A%, =0,

ie., if A= 1/%,. Check that for this value of A the likelihood function L(A)
attains a maximum! So the maximum likelihood estimator for A is 1 [ X

In the example of the number of cycles up to pregnancy of smoking women,
we have seen that L(p) = C'-p”®-(1 - )32, The maximum likelihood estimate
of p was found by differentiating L(p}. Differentiating is not always possible,
as the following example shows.

Estimating the upper endpoint of a uniform distribution

Suppose the dataset z1 = 0.98, xo = 1.57, and z3 = 0.31 is the realization
of a random sample from a U(0,#) distributionr with ¢ > 0 unknown. The
probability density function of each X; is now given by fp(z) = 0 if z is not
in [0, 4] and

folz) = = for 0<z<é.

The likelihood L(#) is zero if # is smaller than at least one of the z;, and
equals 1/6% if @ is greater than or equal to each of the three z;, i.e.,

if 02> max(ry,ze,z3) = 1.57

1
L(9) = folz:1) folaws) fo(za) = {ad

0 if €< max(z:,z2mw3) =157
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Fig. 21.1. Likelthood function L{#) of & sample from a U(0,d) distribution.

Figure 21.1 depicts this likelihood function. One glance at this fizure is enough
to realize that L(#) attains its maximum at max (21,2, 73) = 1.57.

In general, given a dataset 1.z, . .., %, originating from a U/(0,8) distribu-
tion, we see that L(8) = 0 if & is smaller than at least one of the z; and that
L(8) = 1/6™ if ¢ is greater than or equal to the largest of the z;. We conclude
that the maximum likelihood estimator of ! is given by max { X1, Xa,..., Xp}.

Loglikelihood

In the preceding example it was easy to find the value of the parameter for
which the likelthood is maximal. Usually one can fird the maximum by dif-
ferentiating the likelihood function L{#). The calculation of the derivative of
L() may be tedious, because L(#} is a product of terms, all involving & (see
also Quick exercise 21.3). To differentiate L(f) we have to apply the product
tule from calculus. Considering the logarithm of L(#) changes the product of
the terms involving ¢ into a sum of logarithms of these terms, which makes
the process of differentiating easier. Moreover, because the logarithm is an in-
creasing function, the likelihood function L(#) and the loglikelihood function
£(6), defined by
£(9) = In(L{#)),

attain their extreme values for the same values of §. In particuiar, L(0) is
maximal if and only if £{#) is maximal. This is iHlustrated in Figure 21.2 by
the likelihood function L(p) = Cp®(1 — p)322 and the loglikelihood function
£(p) = In(C) + 93 In{p) + 3221In(1 — p) for the smokers. ‘

In the situation that we have a dataset z1,%s,...,z, modeled as a realiza-
tion of a random sample from an Erp{A) distribution, we found as likelihood
fanction L{A) = A™ - e M=+t 4oa) Therefore, the loglikelihood function
i8 given by

A)=nin(A} — Az + o2+ -+ z,).




320 =

waximum likelihood
5-10718 4 0~
—28.5 —
4. 10-13 p
- --300 -
I T 1 f T i
Q 93/415 .5 0 93/415 0.5

Fig. 21.2. The graphs of the likelihood function L{p) and the loglikelihood function
£(p) for the smokers.

QUICK EXERCISE 21.3 In this example, use the loglikelibood function £(A) to
show that the maximum lkelihood estimate of A equals 1/7,,.

Estimating the parameters of the normal disiribution

Suppose that the dataset @1, %29,...,2, 18 a realization of a random sample
from an N (g, o?) distribution, with ¢ and & unknown. What are the maxinmm
likelihood estimates for u and o7

In this case @ is the vector (i, o), and therefore the likelihood function is a

function of two variables:

L(!—h 0') = fp,c(xl)fp,a(‘?:?) Tt fp,cr(xn)a
where each f, - (x) is the N{u,?) probability density function:

1

avam

w2
e_%(T”) , oo < T <o,

f#,rr(z) =

Since

a

n — 2
| (fﬁ’a(m}} 11}((}-) 111( 23\) 21 (:C - ) P
one finds that

&, 0) = (fuo(@)) + - +In (fuo(Tn))
= —nln{s) — nln(+v/27) — % (w1 — )+ + (2 — %)

The partial derivatives of £ are
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It is not hard to show that for these valnes of u and & the likelihood func-
tion L{u, o) attains a maximum. We find that 7, is the maximum likelihood
estimate for 1 and that

is the maximum likelihood estimate for o.

21.4 Properties of maximum likelihood estimators

Apart from the fact that the maximum likelihood principle provides a general
principle to construct estimators, one can also show that maximum likelihood
estimators have several desirable properties.

Invariance principle

In the previous example, we saw that

1 — _
Do=.|=MNY(X;-X,)2
n;{ )

is the maximum likelihood estimator for the parameter o of an N{u, o2) distri-
bution. Does this imply that D2 is the maximum likelihood estimator for o27
This is indeed the case! In general one can show that if T is the maximum
likelihood estimator of a parameter 8 and g(#) is an invertible function of 8,
then g(T') is the maximum likelihood estimator for g{#).
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Asymptotic unbiasedness

The maximum lkelihood estimator T may be biased. For example, because
D? = 2=152 for the previously mentioned maximum likelihood estimator D?
of the parameter o2 of an N(u, 0?) distribution, i follows from Section 19.4

that

nulE[Sﬁ] = EJQ.
n

n

E[D?] =E[n;15§] -

We see that D2 is a biased estimator for o2, but also that as n goes to
infinity, the expected value of D2 converges to o%. This holds more generally.
Unrder mild conditions on the distribution of the random variables X; under
consideration (see, e.g., [36]), one can show that asymptotically (that is, as
the size n of the dataset goes to infinity) maximum likelihood estimators are
unbiased. By this we mean that if T, = A(X1, X2,...,X,) is the maximum
likelihood estimator for a parameter &, then

lim E[T,] = 6.

T 00
Asymptotic minimum variance

The variance of an unbiased estimator for a parameter ¢ is always larger than
or equal to a certain positive number, known as the Cramér-Rao lower bound
(see Remark 20.2). Again under mild conditions one can show that maxi-
mum likelihood estimators have asymptotically the smallest variance among
unbiased estimators. That is, asymptotically the variance of the maximum
likelihood estimator for a parameter 8 attains the Cramér-Rao lower bound.

21.5 Solutions to the quick exercises

21.1 In the case that only the first three chips are defective, the probability
that the observed data occur is equal to

P(Ri=1,Ro=1,Rs=1Rs=0,..., R0 =0) = p*{1 —p)".
For the batch where about 10% of the chips are defective we find that

3
1
PRi=1LRy=1R3=1,B=0,...,Rpp=0) = (E) (

9\7

-— | = 0.00048,
)

whereas for the other baich this probability is equal to (%)3(%)7 = (.00098.
So the probability for the batch with about 50% defective chips is about 2
times larger than the probability for the other batch. In view of this, it would
be reasonable to choose the other batch, not the tested one.
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21.2 From Table 21.1 we derive
L{p) = constant - P(X; = 1) P(X; = 2! ... P(X; = 12)° P(X; > 12)"*

== constant - p'® - [(1— p)p]*”7 - - [~ pjllp]s -9 12

= constant - p?7™ . (1 — p)¥3.

Here the constant is the number of ways we call assign 198 ones, 107 twos, ...,
6 twelves, and 12 numbers larger than 12 to 486 nonsmokers. Differentiating
L{p) with respect to p yields that :

L'{p) = constant - [474p* (1 — p)*** — 955}}474(1 ~p)¥]
= constant - p*™ (1 — p)%* [474(1 — p) — 955p)
= constant - p*73 (1 — p)™* (474 — 1429p).

Now L'(p) =01 p=10,p=1, or p=474/1429 = 0.33, and L{p) attains its
unique maximurn in this last point.

21.3 The loglikelihood function L(A) has derivative

1
20 = E—(:«:l—b—zg—l—---—l—xn) =nl=—Z, .
A A
One finds that £(A) = 0 if and only if A = 1/Z,, and that this is a maximum.
The maximum likelihood estimate for ) is therefore 1/Z,.

21.6 Exercises

21.1 8. Consider the following situation. Suppose we have two fair dice, I
with 5 red sides and 1 white side and D with 1 red side and 5 white sides.
We pick one of the dice randomly, and throw it repeatedly until red comes
up for the first time. With the same die this experiment is repeated two more
times. Suppose the following happens:

First experiment: first red appears in 3rd throw
Second experiment: first red appears iz 5th throw
Third experiment: first red appears in 4th throw.

Show that for die 73, this happens with probability 5.7424 - 1078, and for
die D, the probability with which this happens is 8.9725 - 1074, Given these
probabilities, which die do you think we picked?

21.2 1 We throw an unfair coin repeatedly until heads comes up for the first
time. We repeat this experiment three times (with the same coin) and obtain
the following data:
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First experiment: heads first comes up in 3rd throw
Second experiment: heads first comes up in 5th throw
Third experiment: heads first comes up in 4th throw.

Let p be the probability that heads comes up in a throw with this coin.
Determine the maximum likelihood estimate § of p.

21.3 In Exercise 17.4 we modeled the hits of London by fiying bombs by a
Poisson distribution with parameter .

a. Use the data from Exercise 17.4 to find the maximum likelihood estimate
of .
b. Suppose the summarized data from FExercise 17.4 goi corrupted in the
foliowing way:
Number of hits Dorl 2 3 4 56 7
Number of squares 440 93 35 7 0 0 1

Using this new data, what is the maximum likelihood estimate of u?

21.4 B In Section 19.1, we considered the arrivals of packages at a network
server, where we modeled the number of arrivals per minute by a Pois(u)
distribution. Let z,%s,...,z, be a realization of a random sample from a
Pois(ps) distribution, We saw on page 286 that a natural estimate of the
probability of zeros in the dataset is given by

number of x; equal to zero
- :

-

a. Show that the likelihood L{u) is given by

efn
T1tETa+ - tiEn

Lip) 10

b. Determine the loglikelihood #(x) and the formula of the maximum filkeli-
hood estimate for .

c. What is the maximum likelinood estimate for the probability e ™ of zero
arrivals?

21.5 [ Suppose that x1,z9,...,2, is a dataset, which is a realization of a
random sample from a normal distribution.

a. Let the probability density of this normal distribution be given by

1
V2T

2
e 2= for oo < T < 0.

fu(f) =

Determine the maxirmum likelihood estimate for .
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b. Now suppose that the density of this normal distribution is given by
1
AT
Folw) = —=

Determine the maximum likelihood estimate for o.

1.2; 2
"3/ for —co <z < 0o.

21.6 Let @1,29,...,2, be a dataset that is a realization of a random sample
from a distribution with probability density fs(z) given by

e~@=® frz>§
fote) = {0 for z < 4.

a. Draw the likelihood Z{é).
b. Determine the maximum likelihood estimate for §.

21.7 & Suppose that 21, 22, . . ., Tr, 15 & dataset, which is a realization of a ran-
dom sarnple from a Rayleigh distribution, which is a continuous distribution
with probability density function given by

falz) = %e_%zgmz for z > 0.
In this case what is the maximum Iikelihood estimate for 7

21.8 H (Exercises 19.7 and 20.7 continued) A certain type of plant can be di-
vided into four types: starchy-green, starchy-white, sugary-green, and sugary-
white. The following table lisis the counts of the various types among 3839
leaves.

Type Count.
Starchy-green 1997
Sugary-white 32

Starchy-white 906
Sugary-green 904

Setting

if the observed leave is of type starchy-green
if the observed leave is of type sugary-white
if the observed leave is of type starchy-white
if the observed leave is of type sugary-green,

e e R N

the probability mass function p of X is given by
a 1 2 3 4
pla) 2(246) 28 %(1 -0 11-09)
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and p(e) = 0 for all other a. Here 0 < 4 < 1is an unknown parameter,
which was estimated in Exercise 19.7. We want to find 2 maximum likelihood
estimate of 6.

a. Use the data to find the likelihood L(#) and the loglikelihood £{8).

b. What is the maximum likelihood estimate of ¢ -using the data from the
preceding table?

¢. Suppose that we have the counts of n different leaves: ny of type starchy-
green, ny of type sugary-white, ns of type starchy-white, and nq of type
sugary-green (so m = n + na + nig + n4). Determine the general formula
for the maximum lkelihood estimate of 8.

21.9 O Let 24, T2, . . ., Zn be a dataset that is a realization of a random sample
from a U(w, B) distribution (with o and £ unknown, o < J). Determine the
maximum likelihood estimates for o and 3. ’

21.10 Let z3,23,...,%, De a datéset, which is a realization of a random
sample from a Por{a) distribution. What is the maximum likelthood estimate
for a?

21.11 A Tn Exercise 4.13 we considered the situation where we have a box
containing an unknown number—say ¥—of identical bolts. In order to get an
idea of the size of N we introduced three random variables X, Y, and Z. Here
we will use X and Y, and in the next exercise Z, to find maximum likelithood
estimates of N.

a. Suppose that o1, Za,. .., T, is a dataset, which is a realization of a random
sample from a Ges(1/N) distribution. Determine the maxirmum likelihood
estimate for N.

b. Suppose that 13,¥z, - .., ¥n is a dataset, which is a realization of a random
sample from a discrete upiform distribution on 1,2,..., N. Determine the
maximmum likelihood estimate for V.

21.12 (Exercise 21.11 continued.) Suppose that m bolts in the box were
marked and then 7 bolis were selected from the box; Z is the number of
marked bolts in the sample. (Recall that it was shown in Exercise 4.13 ¢ that
Z has a hypergeometric distribution, with parameters m, N, and r.) Suppose
that k bolts in the sample were marked. Show that the likelihood L(N) is

given by
my (N—m
s~ D)
Next show that L{N) increases for ¥ < mr/k and decreases for N > mr/k,
and conclude that mr/k is the maximum likelihood estimate for N.

21.13 Often one can model the times that customers arrive at a shop rather
well by a Poisson process with (unknown} rate A\ {customers/houzr). On a
certain day, one of the attendants noticed that between noon and 12.45 p.m.

21.6 Exercaws 327

two customers arrived, and another attendant noticed that on the same day
one customer arrived between 12.15 and 1 p.m. Use the observations of the
atiendants {0 determine the maximum lkelihood estimate of A.

21.14 A very inexperienced archer shoots 7 times an arrow at a disc of (un-
known) radius #. The disc is hit every time, but at completely random places
Let ry,72,..., 7, be the distances of the various kits to the center of the disc.
Determine the maximum likelihood estimate for §. .

21.15 On January 28, 1986, the main fuel tank of the space shuttle Challenger
expioded sl_wr.ﬂy after takeoff. Essential in this accident was the leakage of
some of the six O-rings of the Challenger. Tn Section 1.4 the probability of
failure of an O-ring is given by
potbt
70 = e

where £ is the temperature at launch in degrees Fahrenheit. In Table 21.2
th‘e temperature £ (in °F, rounded to the nearest integer) and the number e;of
failures NV for 23 missions are given, ordered according to increasing temper-
atures. (See also Figure 1.3, where these data are graphically depicted.) Give
the Tikelihood L{a, b) and the loglikelihood £(a, b). '

Table 21.2. Space shuttle faflure data of pre- Challenger missions.

53 B7 58 63 66 67 67 67
1 1 1 0 0 ¢ o0

2
68 69 70 70 70 70 72 73
00 0 1 1 0 o0

G
t 75 75 76 76 78 79 &1
N 0 2 0 0 9 0 o0

t
N

i
N

21.16 In the 18th ce-ntury Georges-Lowis Leclerc, Comte de Buffon {1707
1788) found an amusing way to approximate the number 7 using probability

~ theory and statistics. Buffon had the following idea: take a needle and a large

sheet of paper, and draw horizontal lines that are a needle-length apart. Throw
the needle a number of times (say n times) on the sheet, and count how.ofteu it
hits one of the horizontal lines. Say this number is &5, then s, is the realization
of a Bin(n,p) distributed random variable S,,. Here p is the probability that

. the needle hits one of the horizontal lines. In Exercise 9.20 yvou found that

p = 2/m. Show that
7= 2
is the maximunm likelthood estimator for .




