Hints for homework assigned Sept. 29 Originally due Oct. 4; revised due date Oct. 6.

4.26 (Needed for 7.14). Here, we have random variables

- X and Y independent, with $f_X(x) = \alpha e^{-\alpha x}$ and $f_Y(y) = \beta e^{-\beta y}$,
- $\circ \ Z := \min\{X, Y\},$
- $\circ W$, with W = 1 iff $X \leq Y$, and W = 0 iff Y < X.

We are asked to show that Z and W are independent. Let us calculate the joint distribution $F_{Z,W}(z,i) := P(Z \le z \& W = i)$ by integrating over appropriate regions in the plane:

$$P(Z \le z \& W = 1) = P(X \le z \& X \le Y)$$

= $\int_0^z \int_x^\infty \alpha e^{-\alpha x} \beta e^{-\beta y} \, dy \, dx$
= \cdots (You provide details.) \cdots
= $\frac{\alpha}{\alpha + \beta} \left(1 - e^{-(\alpha + \beta)z}\right).$

Similarly

$$P(Z \le z \& W = 0) = \cdots$$
$$= \frac{\beta}{\alpha + \beta} \left(1 - e^{-(\alpha + \beta)z} \right).$$

Also, show by integrating over the appropriate potions of the plane:

$$P(W = i) = \begin{cases} \frac{\beta}{\alpha + \beta}, & \text{if } i = 0; \\ \frac{\alpha}{\alpha + \beta}, & \text{if } i = 1. \end{cases}$$

Finally, calculate

$$P(Z \le z) = 1 - P(X > z \& Y > z)$$

= 1 - P(X > z) \cdot P(Y > z)
= \cdots
= 1 - e^{-(\alpha + \beta)z}.

It is now easy to verify independence of Z and W.

7.14 We can apply **4.26** with $1/\lambda = \alpha$ and $1/\mu = \beta$. By independence, the joint distribution is the *pdf* f_Z times the *pmf* f_W , where

$$f_Z(z|\alpha,\beta) = (\alpha+\beta)e^{-(\alpha+\beta)z}, \quad z \in (0,\infty),$$

$$f_W(w|\alpha,\beta) = \frac{w\alpha + (1-w)\beta}{\alpha+\beta}, \quad w = 0, 1.$$

7.19 Here, σ^2 is the same for all the ϵ_i . Note that $Y_i \sim \text{normal}(\beta x_i, \sigma^2)$, so

$$f_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(y_i - \beta x_i)^2}{2\sigma^2}\right).$$

- (a) Begin by writing $f_{\vec{Y}}(\vec{y} \mid \beta, \sigma^2)$, and then use the factorization theorem.
- (b) Use the log likelihood. The MLE is a linear combination of Y_i , so the expected value is easy to find.
- (c) See the hint for (b).