M4056 Lecture Notes.

Section 5.2. (cont.)

Reminders:

- i) E(aX + bY) = aE(X) + bE(Y)
- *ii*) $E(X^2) = Var(X) + E(X)^2$ (see page 60, 2.3.1)
- *iii*) $Var(aX + b) = a^2 Var(X)$ (see page 60)
- iv) If X and Y are independent, $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$.

(Word to wise: good material for quiz questions here.)

Suppose X_1, \ldots, X_n *iid.* Suppose μ is the expected value of the common distribution of the X_i and σ^2 is its variance. The two statistics of greatest importance are:

- The sample mean: X̄ := 1/n ∑_{i=1}ⁿ X_i,
 The sample variance: S² = 1/(n-1) ∑_{i=1}ⁿ (X_i X̄)².

The expected value and variance of the statistic \overline{X} .

- $E(\overline{X}) = \frac{1}{n}(E(X_1) + \dots + E(X_n)) = \mu$ (Theorem 5.2.6.a, p. 213-4).
- $Var(\overline{X}) = \frac{1}{n^2}(Var(X_1) + \dots + Var(X_n)) = \sigma^2/n$ (Theorem 5.2.6.b, p. 213-4).

To deduce information about S^2 (see next page), we will use a fact of arithmetic:

Theorem 5.2.4. For any numbers x_1, \ldots, x_n , let \overline{x} be their average. (a) The minimum value of $q(a) := \sum_{i=1}^n (x_i - a)^2$ is obtained when $a = \overline{x}$, and (b) $q(\overline{x}) := \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2$.

Proof. We calculate:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x} + \overline{x} - a)^2$$
$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + 2\sum_{i=1}^{n} (x_i - \overline{x})(\overline{x} - a) + \sum_{i=1}^{n} (\overline{x} - a)^2$$
$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (\overline{x} - a)^2.$$

Now, (a) follows since a sum of squares is always positive, so the last line is minimized when $a = \overline{x}$. For (b), set a = 0; our calculation shows:

$$\sum_{i=1}^{n} (x_i - 0)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (\overline{x} - 0)^2.$$

The expected value of the statistic S^2 (Theorem 5.2.6.c, p. 213-4).

$$\begin{split} E(S^2) &= E\left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2\right) \\ &= \frac{1}{n-1}E\left(\sum_{i=1}^n (X_i - \overline{X})^2\right) \\ &= \frac{1}{n-1}E\left(\sum_{i=1}^n X_i^2 - n\overline{X}^2\right) \\ &= \frac{1}{n-1}\left(nE(X_1^2) - nE(\overline{X}^2)\right) \\ &= \frac{1}{n-1}\left(n(\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2)\right) \\ &= \frac{1}{n-1}\left(n\sigma^2 - \sigma^2\right) \\ &= \sigma^2. \end{split}$$

Comment. This result explains the curious coefficient $\frac{1}{n-1}$ in the expression for the sample variance. This makes S^2 an unbiased estimator of σ^2 . A related statistic (which might be called "the variance within the sample") is $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$. This is seldom used, because it gives an estimate for σ^2 that is systematically incorrect.

Homework. Exercise 5.5, page 256. Hint: $P(\overline{X} \le x) = P(X_1 + \dots + X_n \le nx).$