
M4056 Analysis of Variance, I November 22-24, 2010

1. Introduction and Goal

Let X be a normal random variable with mean µX and variance σ2. Let Y be another
normal random variable with mean µY and the same variance σ2 as X . In the lectures
of November 17 and 19, we examined how to test the hypothesis H0 : µX = µY using
the evidence obtained from a sample (X1, . . . , Xn) from the X distribution and a sample
(Y1, . . . , Ym) form the Y distribution. The key technical result that makes this possible is
the fact that

t =
(X − Y ) − (µX − µY )

Sp

√

1/n + 1/m

is a t distribution with m + n − 2 degrees of freedom.

Now suppose that we have several normal random variables Y1, . . . , Ym. We shall assume
they all have the same variance σ2. The means may be different. Let µi be the mean of
Yi, i ∈ { 1, . . . , m }. Let µ be the average of the µi. In summary,

Yi ∼ normal(µi, σ
2) for i = 1, . . .m

µ =
1

m

m
∑

i=1

µi.

From each distribution, we take a sample (Yi1, . . . , Yin). Thus, we have an m × n matrix
of independent random variables:

Y11 Y12 · · · Y1n

Y11 Y12 · · · Y1n

...
...

...
...

Ym1 Ym2 · · · Ymn

Here, the ith row is i.i.d. Yi. Our goal is to devise a test for the null hypothesis:

H0 : µ1 = µ2 = · · · = µm.

For example, suppose m different treatments were applied to m different groups. To
determine if there is any evidence that any of the treatments are effective, this is the
hypothesis we would test. A significant violation of the null hypothesis would count as
evidence of that at least one group was affected differently than the others. Note that in
the scenario we are imagining, we have m samples, each of size n. A more general situation
arises if the samples have different sizes, but we will delay consideration of this till later.

2. Some Notation

We introduce the following abbreviations:

Y i· :=
1

n

n
∑

j=1

Yij (an estimate of µi),
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Y
··

:=
1

mn

m
∑

i=1

n
∑

j=1

Yij (an estimate of µ).

The statistic we will use for testing H0 is based on the following:

Fact.
m

∑

i=1

n
∑

j=1

(Yij − Y
··
)2 =

m
∑

i=1

n
∑

j=1

(Yij − Y i·)
2 + n

m
∑

i=1

(Y i· − Y
··
)2.

Comment. This is saying that the sum of the squares of the deviations of all the observa-
tions from the grand mean (SSTOT ) is equal to the sum of the squares of the deviations
of the observations within each group from the group mean (SSW ) plus the sum of the
squares of the deviations of the group means from the grand mean (SSB—“B” stands for
between groups):

SSTOT = SSW + SSB .

Proof. First, observe that:

m
∑

i=1

n
∑

j=1

(Yij − Y
··
)2 =

m
∑

i=1

n
∑

j=1

[(Yij − Y i·) + (Y i· − Y
··
)]2

=

m
∑

i=1

n
∑

j=1

(Yij − Y i·)
2 +

m
∑

i=1

n
∑

j=1

(Y i· − Y
··
)2

+ 2
m

∑

i=1

n
∑

j=1

(Yij − Y i·)(Yi· − Y
··
).

(∗)

Now
m

∑

i=1

n
∑

j=1

(Yij − Y i·)(Y i· − Y
··
) =

m
∑

i=1

(Y i· − Y
··
)

n
∑

j=1

(Yij − Y i·),

but for each i,
n

∑

j=1

(Yij − Y i·) = 0,

since the sum of the deviations from the mean is zero. Thus, the term with coefficient 2
in (∗) is zero. /////

Lemma. Let Xj , j = 1, . . . , n, be independent random variables with E(Xj) = µj and

Var(Xj) = σ2. Let µ = 1
n

∑n

j=1 µj . Then:

E(Xj − X)2 = (µj − µ)2 +
n − 1

n
σ2.

Proof. First, observe that E(Xj −X)2 = E(X2
j )−2E(XjX)+E(X

2
). Calculate each term

on the right:
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a) E(X2
j ) = (EXj)

2 + VarXj = µ2
j + σ2.

b) EXjX = 1
n

∑n

k=1 E(XjXk) = 1
n

(

∑n

k=1 µjµk + σ2
)

= µjµ + 1
n
σ2. The second equal-

ity here comes about because E(XjXk) = µjµk if j 6= k (because Xj and Xk are
independent), while E(XjXj) = µ2

j + σ2 as in a).

c) E(X
2
) = (EX)2 + VarX = µ2 + 1

n
σ2.

Now add them up: µ2
j + σ2 − 2(µjµ + σ2

n
) + µ2 + σ2

n
= (µj − µ)2 + σ2 − σ2

n
. /////

3. The Expected Values of SSW and SSB

Let us apply the lemma with Xj = Yij , the variables defined in the introduction. (We
treat i as fixed throughout the discussion, but what we say applies to any i.) Since all the
variables have the same expected value, EYij = µi, j = 1, . . . , n, we get:

E(SSW ) =
m

∑

i=1

n
∑

j=1

E(Yij − Y i·)
2 =

m
∑

i=1

n
∑

j=1

n − 1

n
σ2 = m(n − 1)σ2. (W)

(The second equality uses the fact that µij = µi for all j, so the difference µij−µi vanishes.)
This shows among other things that SSW /m(n − 1) is an unbiased estimator for σ2.

Let us apply the lemma, with i in place of j, and Xi = Y i·. (The µi are the numbers in
the introduction: µi = E(Y i·). Recall that we are using the symbol µ to stand for the
average of the µi.) We get

E(SSB) = n

m
∑

i=1

E(Y i· − Y
··
)2

= n

m
∑

i=1

[

(µi − µ)2 +
m − 1

m

σ2

n

]

= (m − 1)σ2 + n

m
∑

i=1

(µi − µ)2.

(B)

This shows that SSB is sensitive to differences in the group means, since if they are not
all the same, then

∑m

i=1(µi − µ)2 > 0.

4. The Distribitions of SSW and SSB

Now recall that if X1, . . . , Xn are i.i.d. normal(µ, σ2), then

1

σ2

n
∑

i=1

(Xi − X)2 = (n − 1)S2/σ2 ∼ χ2
n−1. (∗∗)
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For each i = 1, . . . , m, (∗∗) applies to Yi1, . . . , Yin, showing that

1

σ2

n
∑

j=1

(Yij − Y i·)
2 ∼ χ2

n−1.

Since these sums are independent for different i,

SSW /σ2 =
1

σ2

m
∑

i=1

n
∑

j=1

(Yij − Y i·)
2 ∼ χ2

m(n−1).

Note that this is true regardless of whether or not the null hypothesis H0 : µ1 = · · · = µm

is true.

Equation (∗∗) also applies to
∑m

i=1(Y i·−Y
··
)2, but only in case the null hypothesis is true.

In this case, the Y i· are independent and identically distributed normal(µ, σ2/n) variables.
Thus,

SSB/σ2 =
n

σ2

m
∑

i=1

(Y i· − Y
··
)2 ∼ χ2

m−1.

Finally, we consider the independence of SSW and SSB. We showed earlier in the
course that if X1, . . . , Xn are i.i.d. normal random variables, then X and the vector
(X1 − X, . . . , Xn − X) are independent of one another. Thus, for each i = 1, . . . , m,
Y i· and the vector (Yi1 − Y i·, . . . , Yin − Y i·) are independent of one another. But SSB is
a function of the Y i·, i = 1, . . . , m, while SSW is a function of the Yij − Y i·, i = 1, . . . , m,
j = 1, . . . , n. (This independence result does not depend on the null hypothesis; it is true
regardless of whether the null hypothesis holds.)

5. The Test Statistic

Theorem. Under the null hypothesis, the statistic

F :=
SSB/(m − 1)

SSW /m(n − 1)

has an F distribution with m − 1 and m(n − 1) degrees of freedom.

Proof. This follows from the definition of the F distribution. /////

Under the null hypothesis, the expected value of this statistic is 1. If the null hypothesis is
false, the expected value is larger than 1. A test of level α has rejection region F ∈ (r,∞),
where r is chosen so that P (F > r) = α. The required value of r can be determined from
a table of the F distribution. (Or, see the Mathematica Notebook, FRatioDistribution.)
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