Problem 4.

a) $\Lambda(x_i) = \frac{P(X=x_i|H_0)}{P(X=x_i|H_1)}$. Therefore,

$\Lambda(x_1)$	=	0.2/0.1	=	2
$\Lambda(x_2)$	=	0.3/0.4	=	3/4
$\Lambda(x_3)$	=	0.3/0.1	=	3
$\Lambda(x_4)$	=	0.2/0.4	=	1/2

- b) $\Lambda(x_4) < \Lambda(x_2) < \Lambda(x_1) < \Lambda(x_3)$. $P(reject H_0 | H_0) = P(Type I error) = 0.2$ if the rejection region is $\{x_4\}$. $P(reject H_0 | H_0) = P(Type I error) = 0.5$ if the rejection region is $\{x_4, x_2\}$.
- c) This part of the exercise refers to the Bayesian paradigm. In the Bayesian paradigm, the competing hypotheses are assigned probabilities—the so-called *prior probabilities*—the so-called *prior probabilities*—before testing. After the test these probabilities are revised using the likelihood ratio (as we illustrate in the next part) to give the so-called *posterior probabilities*. The *favored hypothesis* is the hypothesis with the greater posterior probability. If the priors are equal, as in this part of this problem, the favored hypothesis is simply the more likely one. Thus, H_0 is favored if $X = x_1$ or $X = x_3$.
- d) In the Bayes paradigm, we assume that $P(H_0)$ and $P(H_1)$ are positive numbers that add to 1. We then apply the following fact about conditional probability:

$$P(H_i \mid A) \cdot P(A) = P(H_i \& A) = P(A \mid H_i) \cdot P(H_i).$$

This gives us

$$\frac{P(H_0 \mid A)}{P(H_1 \mid A)} = \frac{P(A \mid H_0)}{P(A \mid H_1)} \cdot \frac{P(H_0)}{P(H_1)}.$$

Thus, if $P(H_0) = a$, then $P(H_1) = 1 - a$, and

$$\frac{P(H_0 \mid X = x)}{P(H_1 \mid X = x)} = \Lambda(x) \cdot \frac{a}{1-a}.$$

Now,

$$H_0 \text{ is favored } \Leftrightarrow 1 \leq \frac{P(H_0 \mid X = x)}{P(H_1 \mid X = x)}$$
$$\Leftrightarrow 1 - a \leq \Lambda(x) \cdot a$$
$$\Leftrightarrow (1 + \Lambda(x))^{-1} \leq a.$$

This means that given $X = x_i$, H_0 is favored if a, the prior probability of H_0 , exceeds the numbers indicated in the following table:

Problem 5.

- a) False. The significance level is an upper bound for the probability of rejecting the null hypothesis when it is true.
- b) False. As the significance level decreases, stronger evidence for rejecting the null is demanded. This would lessen the power.
- c) False. In the frequentist paradigm, the null hypothesis is either true or false; it does not have a probability. In the Bayesian paradigm, we do not reject a hypothesis; we modify the probability we attach to it.
- d) False. The probability that the null is falsely rejected is the size of a test.
- e) False. A Type I Error occurs when the test statistic is in the rejection region but H_0 is true.
- f) False. This may be the case in applications, but it would depend on how the test was used. It does not depend on the test.
- g) False. The power of a test is a function of the parameter (via the distribution determined by the parameter).
- h) True. The likelihood ratio is a function of the sample, and the sample is a random variable. So, the likelihood ratio is, too.

Problem 7.

Let $W = \sum_{i=1}^{n} X_i$. If the X_i are independent and $Poisson(\lambda)$, then W is $Poisson(n\lambda)$. Thus,

$$f(w \mid \lambda) = e^{-n\lambda} \frac{(n\lambda)^w}{w!}, \text{ and}$$
$$\Lambda(w) = \frac{e^{-n\lambda_0} (n\lambda_0)^w}{e^{-n\lambda_1} (n\lambda_1)^w} = e^{-n(\lambda_0 - \lambda_1)} \left(\frac{\lambda_0}{\lambda_1}\right)^w.$$

Since $\lambda_0 < \lambda_1$, this is a decreasing function of w. Therefore, the rejection region will be of the form $\{w \mid w \geq k\}$, where k is chosen large enough to achieve the desired significance level. Indeed, set k so that $\sum_{w=k}^{\infty} e^{-n\lambda_0} \frac{(n\lambda_0)^w}{w!} < \alpha$.

Problem 8.

Test T with rejection region R is uniformly most powerful in a class C of tests if, given any other test T' in C,

$$\beta(\theta) \geq \beta'(\theta)$$
, for all $\theta \in \Theta_1$.

Let us choose a rejection region $R_k = \{ w \mid w \geq k \}$ as in Problem 7, thus defining a test T_k . Then by the Neyman-Pearson Lemma, for any $\lambda_1 > \lambda_0$ and any test T' of the same significance level as T_k

$$\beta_k(\lambda_1) = P(w \in R_k \mid \lambda_1) > P(w \in R' \mid \lambda_1) = \beta'(\lambda_1).$$

This shows that T_k is uniformly most powerful for the alternatives $H_0: \lambda = \lambda_0$ versus $H_0: \lambda > \lambda_0$.

Problem 10.

Suppose $T = T(\vec{X})$ is sufficient for \vec{X} . Then by the factorization theorem, $f(\vec{x} \mid \theta) = g(T(\vec{x}) \mid \theta)h(\vec{x})$, for some g and t. Thus,

$$\Lambda(\vec{x}) := \frac{f(\vec{x} \mid \theta_0)}{f(\vec{x} \mid \theta_1)} = \frac{g(T(\vec{x}) \mid \theta_0)h(\vec{x})}{g(T(\vec{x}) \mid \theta_1)h(\vec{x})} = \frac{g(T(\vec{x}) \mid \theta_0)}{g(T(\vec{x}) \mid \theta_1)}.$$

If the distribution of T under the null hypothesis is known, then to define a test of significance level α , we choose a rejection region R such that $P(T \in R \mid H_0) < \alpha$. With no further information, this is all that can be said.

Problem 11.

If n = 25, \overline{X} is normal($\mu, \sigma^2 = 4$). At significance level 0.10, the rejection region is the complement of [-3.29, 3.29]. At significance level 0.05, the rejection region is the complement of [-3.92, 3.92]. If n = 100, \overline{X} is normal($\mu, \sigma^2 = 1$). At significance level 0.10, the rejection region is the complement of [-1.65, 1.65]. At significance level 0.05, the rejection region is the complement of [-1.96, 1.96]. The graphs of the power function are shown below. Key: n = 25, $\alpha = 0.10$ (thick), n = 25, $\alpha = 0.05$ (thick, dashed), n = 100, $\alpha = 0.10$ (thin), n = 100, $\alpha = 0.05$ (thin, dashed). We decrease power by decreasing α . We increase power by increasing n.

Problem 12.

Here, $f(x \mid \theta) = \theta e^{-\theta x}$, so $f(\vec{x} \mid \theta) = \theta^n e^{-\theta(x_1 + \dots + x_n)} = (\theta e^{-\theta \overline{x}})^n = f(\overline{x} \mid \theta)$. The log likelihood function is $\ell(\theta) = n(\ln \theta - \overline{x}\theta)$. Since $\frac{d\ell}{d\theta} = n(1/\theta - \overline{x})$, we see that the MLE of θ is $\hat{\theta} = 1/\overline{x}$. Then, the likelihood ratio test for $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ is of the form (see bottom of page 375):

reject
$$H_0$$
 if : $\lambda(\overline{x}) = \frac{f(\overline{x} \mid \theta_0)}{f(\overline{x} \mid \hat{\theta})} < k.$

Now,

$$\frac{f(\overline{x} \mid \theta_0)}{f(\overline{x} \mid \hat{\theta})} = \frac{\left(\theta_0 e^{-\theta_0 \overline{x}}\right)^n}{\left(\hat{\theta} e^{-\hat{\theta} \overline{x}}\right)^n} = \left(\frac{\theta_0 e^{-\theta_0 \overline{x}}}{(1/\overline{x})e^{-1}}\right)^n = \left(e \,\overline{x} \,\theta_0 \, e^{-\theta_0 \overline{x}}\right)^n.$$

Thus, the test is of the form:

reject
$$H_0$$
 if : $\overline{x} e^{-\theta_0 \overline{x}} < \frac{k^{1/n}}{e \theta_0}$.