Notes on Lecture 2

James J. Madden

time	Topic and comments by JJM
1:20	Basic general definition from the point of view of sets. Definition. f:A→B means
1.20	
2:00	that f is a rule which assigns to each element of set A an element of set B. Pictorial representation of function f, its domain, A, and range, B.
2:30	
	The meaning of "each"; it's role in making a function "well-defined"
3:15	Notice: B does not have to be used up.
4.00	Notice: Different elements of A might be assigned to the same element of B. A is called the domain of f. A = dom f
4:00	
	B is called the range of f. (Note. Today many people use the word "codomain" for what these lectures call "range".)
5:10	The image of f is the part of the range that "used up." The image of f is { f(a) : a in A
2:10	{ (Today, some people use the term "range" to mean what Herb calls the image.
	This can be confusing, unless we are always willing to explain what we mean. A
	mathematician is a person who is always ready to explain what she means.)
6:45	"f is onto" means: the image of f equals the range of f. (Today many people use the
0.43	word "surjective" for what these lectures call "onto".)
7:15	Example: If $A=\{1,2,3\}$, $B=\{4,8,12\}$ and $f(x)=4x$, then $f:A \rightarrow B$ is "onto"
9:52	"f:A \rightarrow B is one-to-one" means: different elements of the domain map to different
to	elements of the range, i.e., no two elements of the domain have the same image.
12:50	(Today we also use the word "injective" to describe a function with this property.)
12:56	A function that is both one-to-one and onto has an inverse. We can picture the
12:50	inverse by "reversing the arrowheads."
	Herb says, "If the function is not one-to-one and onto, we cannot reverse the
	arrowheadsbelieve it or not!"
14:36	Wrap Up
14:50	Back to $s = 16t^2$
15:40	The discussion here shows why it is natural (and necessary) in applications to keep
13.40	the domain in mind.
17:50	Intervals are important domains in real-life laboratory situations.
18:30	Intervals (open and closed)
20:37	Pictures and notation
21:33	Neighborhoods. A neighborhood of c is any open interval that contains c.
23:10	If h>0, then (c-h, c+h) is a symmetric neighborhood of c.
24:20	If a neighborhood of c is not symmetric, there is a smaller neighborhood that is
	symmetric.
24:48	"Deleted neighborhoods" include points close to c, but not c itself. We use these
	when we are interested in what happens NEAR c but do not care about what
	happens AT c.
26:25	What does "near" mean? We need the concept of distance to say.
27:00	Distance and absolute value.
	x-3 is the distance from 3 to x.
29:00	A unnecessarily laborious way of saying what absolute value means.
30:20	f = g means: f and g have the same domain, and $f(x) = g(x)$ for all x in the domain.

	f+g is the function whose domain is the intersection of dom f and dom g, and whose
	rule is: given input x, find $f(x)$ and $g(x)$ and then add these numbers together.
34:00	Composition of functions. If f and g are functions, then the composition of f and g
	denoted
	gf, and read "g after f" is the function that takes an input, applies f and then
	applies g to the output of f.

Discussion Problems

- 1) At the beginning of the lecture, Herb comments that this lecture is about functions, and he says that a function "is a relation between variables." However, the definition that Herb gives a few moments later does not mention variables. His first statement is (choose one):
 - a) a different yet complete and accurate way of describing functions;
 - b) the way that functions are defined in high school, but not college;
 - c) an off-the-cuff description of functions that is perfectly acceptable;
 - d) potentially misleading, but not incorrect;
 - e) wrong;
 - f) meaningless;
 - g) none of the above.
- 2) Explain what a function is.
- 3) Using a pictorial representation similar to the one used at the beginning (with disks/blobs to represent sets, dots to represent elements and arrows to depict the rule of the function), illustrate the meaning of the composition of two functions.
- 4) True or false: In order for gf to make any sense, the image of f must be contained in the domain of g. Justify your answer.