Logic II: Simple Sentences June 14, 2012

CCSS for Grade 6 (page 39)

Students understand the use of variables in mathematical expressions. They write expres-
sions and equations that correspond to given situations, evaluate expressions, and use ex-
pressions and formulas to solve problems. Students understand that expressions in different
forms can be equivalent, and they use the properties of operations to rewrite expressions
in equivalent forms. Students know that the solutions of an equation are the values of the
variables that make the equation true. Students use properties of operations and the idea
of maintaining the equality of both sides of an equation to solve simple one-step equations.
Students construct and analyze tables, such as tables of quantities that are in equivalent
ratios, and they use equations (such as 3x = y) to describe relationships between quantities.

Equivalent expressions

Arithmetic expressions denote numbers. Algebraic expressions, on the other hand, don’t de-
note anything but they have the form of arithmetic expressions, and consequently if numerical
values are assigned to the variables, then the result denotes a number. Two arithmetic ex-
pressions are said to be equal if they denote the same number. Two algebraic expressions are
said to be equivalent if, whenever values are assigned to the variables in the two expressions
in the same way, the resulting expressions denote the same number. To emphasize the idea
here, we call this equivalence in meaning. The subtle importance of this phrase is clarified
in the next paragraph.

There is another way to understand equivalence of expressions which is dependent upon
rules such as the associative, commutative and distributive laws. Each of these laws gives us
a rule for rewriting expressions—for example, using the commutative law, we may rewrite
a+ b as b+ a. If one expression can be transformed into another by applying the laws of
arithmetic, then they are said to be “symbolically equivalent.” Since the laws do not change
what an expression denotes (or will denote when values are assigned to its variables), if two
expressions are symbolically equivalent, then they are equivalent in meaning. The converse is
also true. If two expressions are equivalent in meaning, then they are symbolically equivalent.
This is a remarkable fact; it shows that the laws of arithmetic give a complete description
of addition and multiplication of the real numbers.

Equality

So far, the symbolic formations we have been discussing can only point to numbers, or serve
as directions for making numbers from numerical ingredients. We are at the “Me Tarzan”
stage of language, since we have not yet introduced symbols that enable us to make complete,
intelligent statements, e.g., “I am Tarzan and you are Jane.” The equality symbol = takes
us into a new realm. If we write the equality symbol = between two arithmetic expressions,
we get a mathematical sentence—a complete thought, (though possibly an an incorrect one).
For example 1 =1,2=141,1+ 1+ 1= 3 are sentences. 1 = 2 is also a sentence, but it is
false. (Grammatical but false: “Tarzan is Jane.”)

In developing the ideas of logic, we have been careful to distinguish between the informal
ideas of constants, variables and functions and the formal ideas of constant symbols, variable
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symbols and function symbols. The informal concepts are used in a variety of ways, and
the exact meanings are dependent upon context. On the other hand, constant, variable and
function symbols have explicitly stated meanings and are used according to explicit rules.
The common-sense idea of an equation is also flexible. For example, we often speak of
scientific laws as equations. Ohm’s Law is the equation

I=—
R?

where I is the electrical current through a load, V' is the voltage across the load and R is
the resistance of the load. It describes the behavior of direct current circuits, and it a fact
of nature. But Ohm’s equation is always used in a context where this specific interpretation
is understood. When we speak of a formal equation, on the other hand, we are referring to
an array of symbols consisting of two formal expressions with an equals sign between them.
We experienced the kind of thing I am referring to here yesterday, when we were thinking
about the equivalent expressions:

(m? — n?)% + (2mn)? and (m? +n?)%

We introduced these expressions in the context of thinking about Trina’s Triangles. But the
expressions themselves and their meaning as functions can be separated from this context.
It is true that no matter what numbers we substitute for m and n, the two expressions above
will have the same value, and we can—and did—prove that by using the rules of arithmetic.

A formal equation is true if the expressions on the two sides denote the same number. It is
false if the two expressions denote different numbers. If a formal equation contains algebraic
expressions then it is neither true nor false, since algebraic expressions don’t denote anything.
Such an equation can be changed into true or false one by replacing the variable symbols by
constant symbols.

Here are some examples:
a) 3+ 5 = 8. This equation is true.
b) x + 5 = 8. This equation is neither true nor false.

c) a?+b* = c2. Without a knowledge of the meaning of a, b and ¢, we cannot say anything
at all about this string of symbols. If a, b and ¢ are constant symbols, then the equation
is either true or false, but we cannot tell which until we know more about the symbols.
If a, b and ¢ are variable symbols, then this equation is neither true nor false, but if we
assign to the variables the lengths of the sides of a right triangle, with ¢ being assigned
the length of the longest side, then the resulting assertion is true.

A law or an identitiy is an equation between algebraic expressions that is true no matter
how the variables are interpreted (in some domain). For example, the Commutative Law of
Addition is the equation  + y = y + x, which we know it true of all real numbers.!

1 We have said that a formal equation with variables is neither true nor false. If this is so,
then it would appear that to be consistent we would have to say that identities are neither
true nor false when viewed as formal equations. But remember that we are describing the
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An algebraic equation that is not a law is neither true nor false. The solution set of an
equation is the set of all assignments of values to the variables that makes the equation true.
In some cases, the solution set is obvious:

e For x = 6, the solution set has one element.
e For (x — 1)(z — 2)(z — 3) = 0, the solution set is {1,2,3}.

Two equations are said to be equivalent if they have the same solution set. The process
of “solving” an equation amounts to translating the equation into equivalent equations (or
possibly into sentences more complex than equations) until a sentence whose solutions are
obvious is obtained.

Problems

1. What is a linear equation? What is the solution set of a linear equation in one variable?
In two variables? In three variables?

2. An equation is said to be “polynomial” if the expressions in it can be made by applying
only the operations of addition and multiplication to number constants and variables.
If a polynomial equation involves only one variable, then what generalizations can you
make about the solution set? How about two variables?

3. Give an example of an equation in one variable that has the integers as a solution
set. Give an example of an equation in one variable that has the positive integers as a
solution set.

4. If T add the same expression to both sides of a given equation, can the solution set
change? (Assume that the added expression contains no variables that are not already
in the given equation.)

Project

Mathematica treats expressions and equations in a manner that is consistent with how logi-
cians think. If a numerical expression is given as input, Mathematica evaluates it:

In[l}= 1 + 2 + 3) 4
Out[l]:= 24

If an algebraic expression is given as input, Mathematica evaluates numerical subexpressions,
combines “like terms,” and puts the parts in canonical order. It repeats these operations
until they no longer lead to a simpler expression, and returns the result:

In2):= x + 2 (x +x) +3 (x+2(x +x) +7y)
Out[2:= 56 x + 3 (6 x + y)

structure of formal logic, not giving advice for how to talk to your math class. In formal
logic, we solve this problem by including symbols that make the fact that we are asserting
something for all substitutions explicit. Formal logic actually contains a special symbol, V,
to mean “for all”. The Commutative Law is

Ve,y:x+y=y+ .



It does not expand expressions

In[3]:= (1 + x) (2 + x)
Out[3]:= (1 + x) (2 + x)

unless asked to do so:

In[4]:= Expand[(1 + x) (2 + x)]
Out[4]:= 2 + 3 x + %2

In Mathematica, the sign == is used to form input strings that play the role of equations,
in the sense that they may be true or false, or—if they contain variables—may be solved.
The following input essentially asks Mathematica if two numerical expressions have the same
value:

In[5;)=1+2+ 4 +8==16 - 1
Out[5]:= True

If we present Mathematica with an algebraic equation, the program will often throw the
question back at us.

Out[6]:= 2 + 3 x + x2 == 0

We may interpret this to mean that the program cannot determine whether the equation is
true or false without more information. This may happen even if the equation is an identity:

In[7;=2 +3 x+x"2==(1+x) (2 +x)
Out[7:= 2 + 3 x + x2 == (1 + x) (2 + x)

However, Mathematica sometimes counts expressions as “equal”:

We can check identities using Solve. This function returns a list of conditions on the
variable that make the equation true. {{}} indicates that the empty condition {} suffices,
so the equation is true for all substitutions.

In[9:= Solve[2 + 3 x + x 2 == (1 + x) (2 + x), x]
Out[9]:= {{}}

Compare with the following:

In[10]:= Solve[2 + 3 x + x~ 2 == 0, x]
Out[10]:= {{x — —2},{x — —1}}

Problem: What determines if Mathematica returns True when asked if two expressions are
equal?



