
M7210 Lecture 1 August 20, 2012

The Remainder Theorem. Suppose a and b are integers with b 6= 0. Then, there are
unique integers q and r such that:

a = q b + r and 0 ≤ r < |b|. (∗)

Proof of existence. Let q b be the largest element of the set { p b | p b ≤ a , p ∈ Z }. Then

q b ≤ a so 0 ≤ a − q b,

q b + |b| > a so a − q b < |b|.

Thus, q and r := a − q b satisfy (∗).

Proof of uniqueness. Suppose q′ and r′ also satisfy (∗). Then q b + r = q′ b + r′, so
(q − q′) b = r − r′. Since the inequality in (∗) applies to both r and r′, −b < r − r′ < b.
The only multiple of b in (−|b|, |b|) is 0, so q = q′, and it follows that r = r′. /////

The Euclidean Algorithm. Given integers a and b 6= 0 and the corresponding q and r
supplied by the Remainder Theorem, we make the following new notation:

r−1 := a , r0 := |b| , q1 := q b/|b| , r1 := r.

Then line (∗) reads:
r−1 = q1r0 + r1 and 0 ≤ r1 < r0. (1)

If r1 is not zero, the Remainder Theorem gives us unique q2 and r2 such that:

r0 = q2 r1 + r2 and 0 ≤ r2 < r1. (2)

SImilarly, if r2 is not zero, then there are unique q3 and r3 such that:

r1 = q3 r2 + r3 and 0 ≤ r3 < r2. (3)

If r3 is still non-zero, we may continue. The process leads to a strictly decreasing sequence.
Let rn be the last non-zero element. Then we have: r0 > r1 > · · · > rn > rn+1 = 0.

Euclidean Algorithm in Matrix Form. For i = 1, 2, . . . , n,

ri+1 = ri−1 − qi+1 ri.

Each rj depends on the two previous elements in the sequence. Using matrix notation, we
can carry forward all the data needed for each step:

(

ri

ri+1

)

=

(

0 1
1 −qi+1

)(

ri−1

ri

)

.

Using this repeatedly, we find:
(

rn

0

)

=

(

0 1
1 −qn+1

)

· · ·

(

0 1
1 −q1

)(

r−1

r0

)

. (4)

Notice that
(

q 1
1 0

)(

0 1
1 −q

)

=

(

1 0
0 1

)

,

so by repeatedly multiplying (4) on the left, we get:
(

q1 1
1 0

)

· · ·

(

qn+1 1
1 0

)(

rn

0

)

=

(

r−1

r0

)

. (5)
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Matrix equation (4) above shows:

Lemma 1. There are integers x and y with the property that

x r−1 + y r0 = rn. /////

Example. Let us find integers x and y so that x 1441 + y 1346 = 1. We carry out the
Euclidean Algorithm:

1441 = 1 · 1346 + 95 (1)
1346 = 14 · 95 + 16 (2)

95 = 5 · 16 + 15 (3)
16 = 1 · 15 + 1 (4)
15 = 15 · 1 + 0 (5).

We have n = 4 and q1 = 1, q2 = 14, q3 = 5, q4 = 1, q5 = 15. Using Equation (4):

(

1
0

)

=

(

0 1
1 −15

)(

0 1
1 −1

)(

0 1
1 −5

)(

0 1
1 −14

)(

0 1
1 −1

)(

1441
1346

)

=

(

−85 91
1346 −1441

)(

1441
1346

)

.

We conclude, 1 = (−85)(1441) + (91)(1346). /////

Matrix equation (5) shows:

Lemma 2. There are integers u and v such that

u rn = r−1 and v rn = r0. /////

Definition. Suppose a, b ∈ Z.
• We say a divides b—in symbols, a|b—to mean: there is k ∈ Z such that k a = b.
• We say d is a common divisor of a and b if d|a and d|b.
• The greatest common divisor of a and b—denoted gcd(a, b)—is the largest integer in

the set of common divisors of a and b.

Exercise 1. Suppose a, b, d, x, y ∈ Z. If d|a and d|b, then d|(x a + y b).

As a special case, we see that in equation (∗), if d|a and d|b, then d|r.

Lemma 3. rn = gcd(r−1, r0).

Proof. By Lemma 2, rn is a common divisor of r−1 and r0. Suppose c is a common divisor
of common divisor of r−1 and r0. Then, by Lemma 1 and Exercise 1, c|rn. Since 0 < rn,
c ≤ rn. So, rn is the largest element in the set of common divisors. /////

We may summarize our results up to this point by the following:
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Theorem. For any integers a and b, there are integers x and y such that

gcd(a, b) = x a + y b. /////

Corollary 1. Suppose c, m, n ∈ Z. If c|mn and gcd(c, m) = 1, then c|n.

Proof. Select k ∈ Z such that mn = c k and x, y ∈ Z such that 1 = c x + my. Multiply
the latter by n to get n = c n x + mn y = c n x + c k y = c (n x + k y). /////

Corollary 2. Suppose a, b, m ∈ Z. If gcd(a, b) = 1, a|m and b|m, then ab|m.

Proof. Select x, y ∈ Z such that 1 = a x + b y. Multiply by m to get m = ma x + mb y =
b (m/b) a x + a (m/a) b y. Thus, m = a b

(

(m/b) x + (m/a) y
)

. /////

Unique Factorization in Z

An integer p is called prime if p is neither 1 nor −1 and p = a b for some a, b ∈ Z implies
either a or b is 1 or −1.

Lemma 4. If p is prime and p|a b, then p|a or p|b.

Proof. Suppose p does not divide a. Then gcd(a, p) = 1. Now apply Corollary 2. /////

Lemma 5. For all integers k other than 0, 1 and −1:

either k is prime or k is a product of (finitely many) primes. (†k)

Proof. It is enough to prove (†k) for positive integers, since if p is prime, so is −p. We use
induction, starting at 2:
(1) (†2) is obviously true.
(2) Fix any integer ℓ > 2, and assume the induction hypothesis: (†k) holds when 2 ≤

k < ℓ. We must show (†ℓ). If ℓ is prime, then (†ℓ). If ℓ is not prime, ℓ = a b with
2 ≤ a < ℓ and 2 ≤ b < ℓ. By the induction hypothesis, both a and b are either prime
or products of primes. Therefore a b has the same property. Thus, (†ℓ). /////

Lemma 6. Suppose pi, i = 1, . . . , m and qj , j = 1, . . . , n are positive prime integers. If
∏m

i=1
pi =

∏n

j=1
qj , then m = n and after renumbering, pi = qi for i = 1, . . . , m.

Proof. Assume without loss of generality that m ≤ n; we will prove the lemma by induction
on n, the n = 1 case being obvious. By Lemma 4, qn|pi for some i. Renumbering, we
may assume i = m. Thus, pm = kqn. Since pm is prime, k = 1, so qn = pm. Now, cancel
qn and pm from both sides. The remaining products have fewer factors, and hence by the
inductive hypothesis, after renumbering, pi = qi for i = 1, . . . , n − 1. /////

Theorem. Every integer > 1 factors uniquely as a product of positive primes. /////

Homework. 1) Find the greatest common divisor of 933162 and 1051569 and express it
in the form 933162 x + 1051569 y, with x, y ∈ Z. 2) Do Exercise 1 (page 2 of these notes).
3) In textbook, page 30, #4.
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Extra. Various versions of following “urban legend” appear at several web sites:

While a student at Cambridge, Paul Dirac—the father of relativistic quantum
theory and the discoverer of the positron—heard the following problem:

After a big days catch, three fisherman go to sleep next to their pile of
fish. During the night, one fisherman decides to go home. He divides
the fish in three and finds that this leaves one extra fish. He throws this
into the water, takes one third of the remaining fish, and departs. The
second fisherman awakes. Not knowing that the first has left, he too
divides the fish into three piles, finds one fish left over, discards it, and
takes a third of the remainder. The third fisherman does the same. If
the number of fish caught was not more than 40, what was it?

Dirac proposed that they had begun with −2 fish. The first fisherman threw one
into the water, leaving −3, and took a third of this, leaving −2. The second and
third fisherman did the same.

a) What are the other solutions?

b) How would this generalize if there were n fishermen rather than 3?

c) Suppose (in addition) that the fishermen left in groups of size m. Then . . .?

d) Suppose (in addition) that they always threw b fish back, rather than just 1. Then . . .?
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