
M7210 Lecture 3 August 24, 2012

Permutations

Let X be a set with n elements, which we label 1, 2, . . . , n.

Definition. A permutation of X is a bijective function σ : X → X .

Table notation. We may describe a permutation σ by a table of the following form:

(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

.

Because σ is bijective, each element of X occurs exactly once on the second line.

Example 1. The table below shows a permutation of X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with
σ(1) = 3, σ(2) = 1, etc.

(

1 2 3 4 5 6 7 8 9 10
3 1 9 6 7 4 10 8 2 5

)

Pictures. One may visualize a permutation σ by means of a directed graph, where the
vertices are the elements of X and there is an arrow from x to y if y = σ(x). There is one
arrow for every column in table notation. The permutation in Example 1 can be pictured
as follows:

1 3

92

4

6

5 7

10

8

Since σ is bijective, each element of X has one arrow coming from it and one arrow going
to it. This implies, according to the following lemma, that if we start at any element and
follow the arrows, we eventually return to that element without ever passing through any
other element more than once. In general, the graph may have many connected components
as in the picture, or just one.

Lemma 1. Let σ be a permutation of X . If k is the smallest (strictly) positive integer
such that σk(x) = x, then the elements of {x, σ(x), σ2(x), . . . , σk−1(x)} are all distinct.

Proof. Suppose σℓ(x) = σm(x), where 0 ≤ ℓ ≤ m < k. Apply σ−ℓ to both sides to get
x = σm−ℓ(x). But 0 ≤ m − ℓ < k, so by the the assumption on k, m − ℓ = 0. /////

Cycles. A permutation is called a k-cycle (or a cycle of length k) if it fixes all but k
elements—which we may name a0, . . . ak−1—and acts on those according to:

σ(a0) = a1 , σ(a1) = a2 , · · · (ak−2) = ak−1 , σ(ak−1) = a0.
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Such a cycle is denoted by listing the elements it moves between parentheses in such a
manner that the image of each element is listed immediately after it:

σ = (a0 a2 · · · ak−1).

We may start with any element in the cycle:

(a0 a1 · · · ak−2 ak−1) = (a1 a2 · · · ak−1 a0) = · · · = (ak−1 a0 · · · ak−2).

A cycle of length 1 is the identity permutation. A cycle of length 2 is called a transposition.
Two cycles are said to be disjoint if they have no elements in common.

When using cycle notation to denote permutations, we use square braces to indicate the
argument of a function:

(2 4 6 9)[4] = 6 (2 4 6 9)[9] = 2 (2 4 6 9)[3] = 3.

To evaluate a product of cycles, we work from the right.

(1 3 5)(2 3 7)(1 5 7)[2] = (1 3 5)(2 3 7)
[

(1 5 7)[2]
]

= (1 3 5)(2 3 7)[2]

= (1 3 5)
[

(2 3 7)[2]
]

= (1 3 5)[3] = 5

Direct computation shows that if γ and δ are disjoint cycles, then γδ = δγ.

Cycle decomposition. Suppose σ is a permutation of X . Choose any element x of X . After
it, write σ(x). After that, write σ(σ(x)) = σ2(x), and continue until σk(x) = x. (The last
element written is σk−1(x).) Write the result as a k-cycle:

(

x σ(x) σ2(x) · · · σk−1(x)
)

.

After this, choose an element of X that is not in {x, σ(x), σ2(x), . . . , σk−1(x)}, and repeat.
Write the corresponding cycle after the one previously written. Continue choosing previ-
ously unused elements and writing out the cycles they traverse until every element of X
has been named. The end result will appear in following form:

(

x1 σ(x1) · · ·σ
k1−1(x1)

)(

x2 σ(x2) · · ·σ
k2−1(x2)

)

· · ·
(

xm σ(xm) · · ·σkm−1(xm)
)

, (∗)

where
1) xi+1 is an element of X that does not occur among the σj(xs) with s ≤ i;
2) each element of X appears exactly once among the σj(xi);
3) σki(xi) = xi;
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4) each ki is ≥ 1—when kj = 1, then the cycle containing xj is (xj).

Example 1 (continued). In cycle notation, the permutation in the table looks like this:

(1 3 9 2)(4 6)(5 7 10)(8). /////

Lemma 2. Every permutation can be written as a product of disjoint cycles, and the
cycles that appear in any such expression of a given permutation are the same, up to
order.

Proof. The existence is a direct consequence of the algorithm for cycle decomposition
which we just described. For uniqueness, let γ1, . . . , γs be disjoint cycles, and let δ1, . . . , δt

be disjoint cycles. Suppose
γ1 · · ·γs = δ1 · · · δt.

Select any element of γ1. It must appear in one of the δis, and that in which it does must
equal γ1. Multiply left and right by γ−1

1 , thus removing it from both sides. By induction,
the remaining cycles are the same on both sides. /////

Lemma 3. A cycle of length k can be written as a product of k − 1 transpositions:

(a0 a2 · · · ak−1) = (a0 ak−1)(a0 ak−2) · · · (a0 a3)(a0 a2)(a0 a1).

Note that the transpositions are not disjoint. We see from Lemma 3 that every permutation
is a product of transpositions. There is no uniqueness. For example (a b c) = (a c)(a b) =
(b a)(b c) = (c b)(c a). We will show, however, that if σ is any permutation, then the parity
(even or odd) of the number of factors in any decomposition of σ into transpositions is the
same.

Lemma 4. Suppose k, ℓ ≥ 0, and a, c1, · · · , ck, b, d1, · · · , dℓ are distinct elements of X .
Then:

(a b)(a c1 · · · ck b d1 · · ·dℓ) = (b d1 · · ·dℓ)(a c1 · · · ck),

(a b)(b d1 · · ·dℓ)(a c1 · · · ck) = (a c1 · · · ck b d1 · · ·dℓ).

In case k = 0, Lemma 4 asserts that (a b)(a b d1 · · ·dℓ) = (a)(b d1 · · ·dℓ). If k = ℓ = 0, we
are saying (a b)(a b) = (b)(a). The proof of Lemma 4 is by direct computation.

Definition. Suppose σ is written as a product of m disjoint cycles of length k1, . . . , km.
Let N(σ) := (k1 − 1) + (k2 − 1) + · · ·+ (km − 1). Let sgn σ = (−1)N(σ).

If τ is a transposition, N(τ) = 1 and sgn τ = −1. Let us apply N to the permutations in
Lemma 4:

N
(

(a c1 · · · ck b d1 · · ·dℓ)
)

= k + ℓ + 1,

N
(

(b d1 · · ·dℓ)(a c1 · · · ck)
)

= k + ℓ.

Lemma 5. Suppose τ is a transposition and σ is any permutation. Then

sgn(τσ) = (−1) sgnσ.
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Proof. Suppose τ = (a b). Write σ as a product of disjoint cycles, allowing factors of the
form (a) or (b) if a or b does not occur in any other cycles, and write the cycles containing
a and b first. If a and b both occur in the initial cycle of σ, then by the first line of Lemma
4, N(σ) is odd iff N(τσ) is even. If a and b occur in different cycles in σ, then by the
second line of Lemma 4, N(σ) is odd iff N(τσ) is even. /////

Proposition. For any permutations α and β of X ,

sgn(αβ) = (sgn α)(sgnβ).

Proof. Let m be the minimum number of transpositions required to write α. We use
induction on m, the case m = 1 having been proved in Lemma 5. Note that if α =
τ1τ2 · · · τm, then τ2 · · · τm cannot be written with fewer than m − 1 transpositions. Thus

sgn(αβ) = (−1) sgn(τ2 · · · τmβ) by Lemma 5
= (−1) sgn(τ2 · · · τm)(sgn β) by induction
= (sgn α)(sgnβ) by Lemma 5.

Homework

1) Suppose X is a set with n elements (n a positive integer) and f : X → X is any
function (not necessarily bijective). Let X[k] := { fk(x) | x ∈ X }, and let f[k] be the
restriction of f to X[k]. Show that there is K < n such that f[k] is a permutation of
X[k] for all k ≥ K.

2) If the positive integers (k1, k2, . . . , km) in (∗) are listed in decreasing order, the se-
quence is called the type of the permutation. The type is simply a list of the cycle
lengths. How many different types are there if X has 5 elements? 6? 7?

3) Suppose σ = (a0 a1 · · · a99). Write the following in cycle notation: σ−1, σ2, σ3, σ4,
σ5, σ6, σ7.

4) Suppose σ is a permutation of a set with n elements. Let t(σ) be the number of cycles
in σ, including 1-cycles. (E.g., if σ is the permutation in Example 1, t(σ) = 4.) Show
that sgnσ = (−1)n−t(σ).

5) Suppose that p is a non-constant function from the set of permutations of a finite set
X to {−1, 1} with the property that

p(αβ) = p(α) p(β), for all permutations α and β.

Show that p = sgn.

6) Prove the statement in italics just before Lemma 4.
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