
M7210 Lecture 4 Monday August 27, 2012

Vector Spaces: Definition and Examples

I will assume familiarity with matrix multiplication, with row reduction and row-echelon
form and with the manner in which a system of linear equations may be represented by
an augmented matrix and solved by row reduction. (See Chapter 1 of the textbook for a
review.)

Let F be a field (e.g., Q, R, C).

Definition. A vector space over F is a set V equipped with:
a) a binary operation + on V , a unary operation − on V and a constant 0V ∈ V , which

together make (V, +,−, 0V ) into an abelian group;
b) a scalar multiplication with coefficients from F, i.e., a way of multiplying elements of

V by elements of F, with the properties that for all a, b ∈ F and v, w ∈ V :
i. 1Fv = v;
i. a(b v) = (a b) v;
ii. (a + b) v = (a v) + (b v);
iii. a(v + w) = (a v) + (a w).

Many properties follow. For example, 0Fv = 0V = a 0V for all v ∈ V and a ∈ F. Also,
(−1F)v = −v for all v ∈ V .

Examples. I will mention some important constructions. (For more, see the textbook.)

1) Fn denotes the set of n-tuples of elements of F. It is a vector space with component-
wise operations. The elements

e1 = (1, 0, . . . , 0) , e2 = (0, 1, . . . , 0) , . . . , en = (0, 0, . . . , 1)

are called the standard basis for Fn. Every element of Fn has an expression as a linear
combination of the ei that is unique up to the order of the summands:

(a1, a2, . . . , an) = a1e1 + a2e2 + · · ·+ anen.

2) Let S be any set, and let SF be the set of functions from S to F. Addition and scalar
multiplication operate “pointwise”—that is, for any f, g ∈ SF and s ∈ S,

(f + g)[s] = f [s] + g[s] (af)[s] = af [s].

(Here, I have used square braces to indicate the argument of a function.) If S is finite,
then the family of functions { δs | s ∈ S }, where δs defined by

δs[t] :=

{

1, if s = t;
0, if s 6= t,
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has the property that every element of FS can be written uniquely as a linear combi-
nation of the δs. Indeed, when S is finite and f ∈ FS , then we have:

for all t ∈ S, f [t] =
∑

s∈S

f [s]δs[t].

When S is infinite, there is no easy way to identify a basis for FS .

3) Let E be any set. Consider the expressions a1e1 + a2e2 + · · · + akek, where k ∈ N,
a1, . . . , ak ∈ F, e1, . . . , ek ∈ E. Let us agree to count two such expressions equivalent
if one can be converted to the other using the algebraic rules in the definition above.
For example, if E = {r, s, t}, then r + 2s + 3t + 4r + 5s − t − t − t is equivalent to
5r + 7s. Let

⊕

E
F denote the set of all equivalence classes of expressions. This is

called the free F-vector space on E. If we order E, then in each equivalence class,
there is a unique “fully simplified” representative, obtained by combining like terms,
omitting zero terms and then arranging the non-zero terms according to the chosen
order on E. We may identify

⊕

E
F with the set of all fully simplified expressions.

We add two expressions by writing a plus sign between them and then simplifying.
Scalars operate by distributing over terms.

4) If V is a vector space and U is a subset of V that is closed under addition and scalar
multiplication, then U is a vector space. U is said to be a sub-vector-space of V .

1. Spanning, Independence, Bases and Dimension

The main goal of this section is to define the dimension of a vector space (in the finite-
dimensional case). In pursuit of this goal, we define and study the other concepts in the
title.

Definition. Let S = {s1, s2, . . . , } ⊆ V . We say S spans V if every element of V is a
linear combination of elements of S. We say S is independent if no linear combination of
elements of S is equal to 0V except the one with all coefficients equal to 0F. We say S is
a basis if it is independent and it spans V .

In Examples 1, 2 and 3 in the previous section, we exhibited some special bases for some
special vector spaces.

Proposition 1.1. Suppose V has a basis {v1, . . . , vn}. Then for each element v ∈ V ,
there is a unique n-tuple (c1, . . . , cn) ∈ Fn such that

v = c1 v1 + c2 v2 + · · · + cn vn.

Homework Exercise 1 is to write out the proof in detail. It is a direct consequence of
the definition.

Proposition 1.2. a) A minimal spanning set is independent. b) A maximal independent
subset spans.

Proof. a) If S is not independent, then some element of S can be written as a linear
combination of others, so it can be omitted without destroying the spanning property. b)
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If S does not span, then some element of V cannot be written as a linear combination of
elements of S, so it can be added to S without destroying independence. /////

Homework Exercise 2. Suppose V is a sub-vector-space of W . Show that a basis for
V may be extended to a basis for W . Give an example showing that a basis for W might
not contain a basis for V .

Proposition 1.3. If V has a spanning set {s1, . . . , sn} with n elements, then every inde-
pendent subset of V has ≤ n elements.

Proof. We show that any subset of V with m = n + 1 elements is not independent. Let

v1 = c11s1 + · · ·+ c1nsn

v2 = c21s1 + · · ·+ c2nsn

...

vm = cm1s1 + · · ·+ cmnsn.

We claim that we can find (x1, . . . , xm) ∈ Fn+1 different from (0, . . . , 0) so that

x1v1 + . . . + xmvm = 0V . (∗)

Consider the system of n homogeneous equations in m = n + 1 variables represented by
the following table, with the columns corresponding to the xi.

c11 c21 . . . cm1 0
c12 c22 . . . cm2 0
...

...
...

...
c1n c2n . . . cmn 0

Since are more variables than equations, there is a non-zero solution, and this satisfies (∗).
/////

Proposition 1.4. If V has a finite spanning set, then it has a finite basis, and every basis
of V has the same number of elements.

Proof . The spanning set contains a basis by Proposition 1. If there is a basis of cardinality
n and a base of cardinality n′ then since both sets are both spanning sets and independent,
by Proposition 2, n ≤ n′ and n′ ≤ n. /////

Definition. If V has a finite spanning set, the number of elements in a basis for V is
called the dimension of V and is denoted dim V .

Proposition 1.5. Suppose V is finite-dimensional. If U is a sub-vector-space of V , then
U is finite dimensional and dim U ≤ dim V . If U ⊆ V and dimU = dim V , then U = V .

Homework Exercise 3. Prove Proposition 1.5.

Later, we will extend the concept of dimension to vector spaces that do not have finite
spanning sets.
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