M7210 Lecture 4 Monday August 27, 2012

Vector Spaces: Definition and Examples

I will assume familiarity with matrix multiplication, with row reduction and row-echelon
form and with the manner in which a system of linear equations may be represented by
an augmented matrix and solved by row reduction. (See Chapter 1 of the textbook for a
review.)

Let F be a field (e.g., Q, R, C).

Definition. A wector space over F is a set V equipped with:
a) a binary operation + on V', a unary operation — on V and a constant Oy € V', which
together make (V,+, —, 0y) into an abelian group;
b) a scalar multiplication with coefficients from F, i.e., a way of multiplying elements of
V by elements of F, with the properties that for all a,b € F and v,w € V:
i. lpv = v;
i. a(bv) = (ab)uv;
ii. (a+b)v=(av)+ (bv);
iii. a(v+w) = (av) + (aw).

Many properties follow. For example, Opv = 0y = a0y for all v € V and a € F. Also,
(—1p)v = —v for all v € V.

Examples. 1 will mention some important constructions. (For more, see the textbook.)

1) F™ denotes the set of n-tuples of elements of F. It is a vector space with component-
wise operations. The elements

er = (1,0,...,0), ea=(0,1,...,0),..., en, = (0,0,...,1)

are called the standard basis for F™. Every element of F" has an expression as a linear
combination of the e; that is unique up to the order of the summands:

(a1,a2,...,a,) = a1e1 + ages + -+ - + apey.

2) Let S be any set, and let S be the set of functions from S to F. Addition and scalar
multiplication operate “pointwise”—that is, for any f,g € S¥ and s € S,

(f +9)lsl = flsl +gls]  (af)ls] = afls].

(Here, I have used square braces to indicate the argument of a function.) If S is finite,
then the family of functions { ds | s € S}, where J, defined by

1, if s=t;
Oslt] = {o, if s ot
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has the property that every element of F° can be written uniquely as a linear combi-
nation of the 65. Indeed, when S is finite and f € F?, then we have:

forallt € S, f[t] = Zf[s]és[t].

ses

When S is infinite, there is no easy way to identify a basis for F*°.

3) Let E be any set. Consider the expressions aje; + ases + - -+ + ageg, where k € N,
ay,...,ar €F, eq,...,ep € E. Let us agree to count two such expressions equivalent
if one can be converted to the other using the algebraic rules in the definition above.
For example, if £ = {r,s,t}, then r + 2s + 3t + 4r + 5s —t — t — t is equivalent to
5r + 7s. Let @y F denote the set of all equivalence classes of expressions. This is
called the free F-vector space on E. If we order E, then in each equivalence class,
there is a unique “fully simplified” representative, obtained by combining like terms,
omitting zero terms and then arranging the non-zero terms according to the chosen
order on E. We may identify €, F with the set of all fully simplified expressions.
We add two expressions by writing a plus sign between them and then simplifying.
Scalars operate by distributing over terms.

4) If V is a vector space and U is a subset of V that is closed under addition and scalar
multiplication, then U is a vector space. U is said to be a sub-vector-space of V.

1. Spanning, Independence, Bases and Dimension

The main goal of this section is to define the dimension of a vector space (in the finite-
dimensional case). In pursuit of this goal, we define and study the other concepts in the
title.

Definition. Let S = {s1,s92,...,} C V. We say S spans V if every element of V is a
linear combination of elements of S. We say S is independent if no linear combination of
elements of S is equal to 0y except the one with all coefficients equal to Op. We say S is
a basis if it is independent and it spans V.

In Examples 1, 2 and 3 in the previous section, we exhibited some special bases for some
special vector spaces.

Proposition 1.1. Suppose V has a basis {v1,...,v,}. Then for each element v € V,
there is a unique n-tuple (cy,...,c,) € F™ such that

V=1C V1 +CV2+ -+ CpUp.
Homework Exercise 1 is to write out the proof in detail. It is a direct consequence of
the definition.

Proposition 1.2. a) A minimal spanning set is independent. b) A maximal independent
subset spans.

Proof. a) If S is not independent, then some element of S can be written as a linear
combination of others, so it can be omitted without destroying the spanning property. b)
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If S does not span, then some element of V' cannot be written as a linear combination of
elements of S, so it can be added to S without destroying independence. /1]

Homework Exercise 2. Suppose V is a sub-vector-space of W . Show that a basis for
V may be extended to a basis for W. Give an example showing that a basis for W might
not contain a basis for V.

Proposition 1.3. IfV has a spanning set {s1,...,s,} with n elements, then every inde-
pendent subset of V' has < n elements.

Proof. We show that any subset of V' with m = n + 1 elements is not independent. Let

V1 = C1181 + -+ C1nSn

Vg = C2181 + *+ + CanSp

Um = Cm181 + *** + CmnSn.
We claim that we can find (x1,...,,,) € F**! different from (0,...,0) so that
101 + ...+ T U, = Oy (%)

Consider the system of n homogeneous equations in m = n + 1 variables represented by
the following table, with the columns corresponding to the x;.

C11 C21 e Cm1 | 0
C12 C29 e Cm?2 | 0
Cin Cn -+ Cmn | O

Since are more variables than equations, there is a non-zero solution, and this satisfies (x).
/1111

Proposition 1.4. IfV has a finite spanning set, then it has a finite basis, and every basis
of V' has the same number of elements.

Proof. The spanning set contains a basis by Proposition 1. If there is a basis of cardinality
n and a base of cardinality n’ then since both sets are both spanning sets and independent,
by Proposition 2, n < n' and n’ < n. /]]]/

Definition. If V has a finite spanning set, the number of elements in a basis for V is
called the dimension of V' and is denoted dim V.

Proposition 1.5. Suppose V is finite-dimensional. If U is a sub-vector-space of V' | then
U is finite dimensional and dimU < dimV. If U CV and dimU = dimV, then U = V.
Homework Exercise 3. Prove Proposition 1.5.

Later, we will extend the concept of dimension to vector spaces that do not have finite
spanning sets.



