Vector Spaces: Definition and Examples

I will assume familiarity with matrix multiplication, with row reduction and row-echelon form and with the manner in which a system of linear equations may be represented by an augmented matrix and solved by row reduction. (See Chapter 1 of the textbook for a review.)

Let \mathbb{F} be a field (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{C}).

Definition. A vector space over \mathbb{F} is a set V equipped with:

- a) a binary operation + on V, a unary operation on V and a constant $0_V \in V$, which together make $(V, +, -, 0_V)$ into an abelian group;
- b) a scalar multiplication with coefficients from \mathbb{F} , i.e., a way of multiplying elements of V by elements of \mathbb{F} , with the properties that for all $a, b \in \mathbb{F}$ and $v, w \in V$:
 - i. $1_{\mathbb{F}}v = v;$
 - i. a(bv) = (ab)v;
 - ii. (a+b)v = (av) + (bv);
 - iii. a(v+w) = (a v) + (a w).

Many properties follow. For example, $0_{\mathbb{F}}v = 0_V = a 0_V$ for all $v \in V$ and $a \in \mathbb{F}$. Also, $(-1_{\mathbb{F}})v = -v$ for all $v \in V$.

Examples. I will mention some important constructions. (For more, see the textbook.)

1) \mathbb{F}^n denotes the set of *n*-tuples of elements of \mathbb{F} . It is a vector space with componentwise operations. The elements

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

are called the *standard basis* for \mathbb{F}^n . Every element of \mathbb{F}^n has an expression as a linear combination of the e_i that is unique up to the order of the summands:

$$(a_1, a_2, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n.$$

2) Let S be any set, and let $S^{\mathbb{F}}$ be the set of functions from S to \mathbb{F} . Addition and scalar multiplication operate "pointwise"—that is, for any $f, g \in S^{\mathbb{F}}$ and $s \in S$,

$$(f+g)[s] = f[s] + g[s]$$
 $(af)[s] = af[s].$

(Here, I have used square braces to indicate the argument of a function.) If S is finite, then the family of functions $\{\delta_s \mid s \in S\}$, where δ_s defined by

$$\delta_s[t] := \begin{cases} 1, & \text{if } s = t; \\ 0, & \text{if } s \neq t, \end{cases}$$

has the property that every element of \mathbb{F}^S can be written uniquely as a linear combination of the δ_s . Indeed, when S is finite and $f \in \mathbb{F}^S$, then we have:

for all
$$t \in S$$
, $f[t] = \sum_{s \in S} f[s]\delta_s[t]$.

When S is infinite, there is no easy way to identify a basis for \mathbb{F}^S .

- 3) Let E be any set. Consider the expressions $a_1e_1 + a_2e_2 + \cdots + a_ke_k$, where $k \in \mathbb{N}$, $a_1, \ldots, a_k \in \mathbb{F}, e_1, \ldots, e_k \in E$. Let us agree to count two such expressions equivalent if one can be converted to the other using the algebraic rules in the definition above. For example, if $E = \{r, s, t\}$, then r + 2s + 3t + 4r + 5s t t t is equivalent to 5r + 7s. Let $\bigoplus_E \mathbb{F}$ denote the set of all equivalence classes of expressions. This is called the *free* \mathbb{F} -vector space on E. If we order E, then in each equivalence class, there is a unique "fully simplified" representative, obtained by combining like terms, omitting zero terms and then arranging the non-zero terms according to the chosen order on E. We may identify $\bigoplus_E \mathbb{F}$ with the set of all fully simplified expressions. We add two expressions by writing a plus sign between them and then simplifying. Scalars operate by distributing over terms.
- 4) If V is a vector space and U is a subset of V that is closed under addition and scalar multiplication, then U is a vector space. U is said to be a *sub-vector-space* of V.

1. Spanning, Independence, Bases and Dimension

The main goal of this section is to define the dimension of a vector space (in the finitedimensional case). In pursuit of this goal, we define and study the other concepts in the title.

Definition. Let $S = \{s_1, s_2, \ldots,\} \subseteq V$. We say S spans V if every element of V is a linear combination of elements of S. We say S is *independent* if no linear combination of elements of S is equal to 0_V except the one with all coefficients equal to $0_{\mathbb{F}}$. We say S is a basis if it is independent and it spans V.

In Examples 1, 2 and 3 in the previous section, we exhibited some special bases for some special vector spaces.

Proposition 1.1. Suppose V has a basis $\{v_1, \ldots, v_n\}$. Then for each element $v \in V$, there is a unique n-tuple $(c_1, \ldots, c_n) \in \mathbb{F}^n$ such that

$$v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n.$$

Homework Exercise 1 is to write out the proof in detail. It is a direct consequence of the definition.

Proposition 1.2. a) A minimal spanning set is independent. b) A maximal independent subset spans.

Proof. a) If S is not independent, then some element of S can be written as a linear combination of others, so it can be omitted without destroying the spanning property. b)

If S does not span, then some element of V cannot be written as a linear combination of elements of S, so it can be added to S without destroying independence. /////

Homework Exercise 2. Suppose V is a sub-vector-space of W. Show that a basis for V may be extended to a basis for W. Give an example showing that a basis for W might not contain a basis for V.

Proposition 1.3. If V has a spanning set $\{s_1, \ldots, s_n\}$ with n elements, then every independent subset of V has $\leq n$ elements.

Proof. We show that any subset of V with m = n + 1 elements is not independent. Let

$$v_1 = c_{11}s_1 + \dots + c_{1n}s_n$$
$$v_2 = c_{21}s_1 + \dots + c_{2n}s_n$$
$$\vdots$$
$$v_m = c_{m1}s_1 + \dots + c_{mn}s_n.$$

We claim that we can find $(x_1, \ldots, x_m) \in \mathbb{F}^{n+1}$ different from $(0, \ldots, 0)$ so that

$$x_1v_1 + \ldots + x_mv_m = 0_V. \tag{(*)}$$

Consider the system of n homogeneous equations in m = n + 1 variables represented by the following table, with the columns corresponding to the x_i .

c_{11}	c_{21}	•••	c_{m1}	0
c_{12}	c_{22}		c_{m2}	0
÷	:		:	÷

Since are more variables than equations, there is a non-zero solution, and this satisfies (*). /////

Proposition 1.4. If V has a finite spanning set, then it has a finite basis, and every basis of V has the same number of elements.

Proof. The spanning set contains a basis by Proposition 1. If there is a basis of cardinality n and a base of cardinality n' then since both sets are both spanning sets and independent, by Proposition 2, $n \le n'$ and $n' \le n$.

Definition. If V has a finite spanning set, the number of elements in a basis for V is called the dimension of V and is denoted dim V.

Proposition 1.5. Suppose V is finite-dimensional. If U is a sub-vector-space of V, then U is finite dimensional and dim $U \leq \dim V$. If $U \subseteq V$ and dim $U = \dim V$, then U = V.

Homework Exercise 3. Prove Proposition 1.5.

Later, we will extend the concept of dimension to vector spaces that do not have finite spanning sets.