
M7210 Lecture 6. Vector Spaces Part 3, Linear Maps Friday August 31, 2012

In the previous section, we saw how to associate with an m × n matrix with entries from F a
function from F

n to F
m. In the present section, we introduce the general idea of a linear map

and then examine the relationships between bases, matrices and linear maps. This mostly
concerns notation. The notational conventions take a good deal of care and attention to
understand, remember and employ effectively, but there is a big payoff. When we can use
notation effectively, it ceases to be a constraint and becomes a powerful tool.

Definition. Let V and W be vector spaces. A linear mapping from V to W is a function
L : V → W such that L(a1v1 + a2v2) = a1L(v1) + a2L(v2) for all a1, a2 ∈ F and all v1, v2 ∈ V .

Examples.

i) Let a, b ∈ R. The function f : R
2 → R defined by f(x, y) = ax + by is a linear map.

The function f : R → R defined by f(x) = ax + b is not a linear map, despite the fact
that every American high-school teacher calls this a “linear function.” (Purists say that
f(x) = ax + b is “affine linear”.)

ii) Suppose X is a set and Y ⊆ X. The the map that sends a function g ∈ F
X to its

restriction g|Y in F
Y is linear.

iii) Differentiation is a linear map from the R-vector space C1(R) of all continuously differ-
entiable functions on R to C(R), the vector space of all continuous functions on R. (This
map is surjective but not injective.)

Proposition 3.1. Suppose V has a basis {v1, . . . , vn}. Let w1, . . . , wn be any elements what-
soever of W . Then there is a unique linear map L : V → W such that L(vi) = wi for
i = 1, . . . , n.

Exercise. Prove Proposition 3.1. Comment. Proposition 3.1 is an example of a universal

mapping property. We will see many more as we proceed through this course.

Using Matrices to Represent Linear Maps. In the next several paragraphs, we will show
that if bases are fixed then there is a natural one-to one correspondence between matrices and
linear maps.

Suppose V has an ordered basis ∆ = {v1, . . . , vn} and W has a ordered basis Ω = {w1, . . . , wm}.
The next two propositions refer to these bases.

Proposition 3.2. Let A = {aij} be an m × n matrix with entries from F. Then there is a
unique linear map L A

Ω∆
: V → W such that

L A
Ω∆

(vj) =
m

∑

i=1

aijwi. (∗)

Proposition 3.2 is an immediate consequence of Proposition 3.1. The important idea is that
once a bases for both V and W have been chosen, then any dimW ×dim V matrix determines
a linear map from V to W by the rule expressed in (∗).
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Caution. Take note of the fact that the sum on the right hand side of (∗) is a linear combination
of vectors. It bears a slight resemblance to the sum we would write if we wanted to express
the i-th entry of the matrix product Ac, with c being the column having entries c1, . . . , cn:

(A c)i =
n

∑

j=1

aijcj . (∗∗)

But note that the summation in(∗) has a running index corresponding to the dimension of the
codomain W , while the running index in (∗∗) corresponds to the dimension of the domain V .
Also, the summands are numbers in (∗∗) but vectors in (∗).

We represent linear maps with matrices by letting them operate on column vectors from the
left, i.e., (matrix)·(column). Some other authors (e.g., Jacobson, Basic Algebra I ) let matrices
operate on row vectors from the right, i.e., (row)·(matrix). This has advantages in some
situations, but it is less common. The convention that we adopt means that the columns of A

can be viewed as elements of the codomain, expressed with respect to a specified basis on the
codomain.

Fact to Remember. When representing linear maps my (matrix)·(column), the j-th column
of the matrix, {aij}

m
i=1

, lists the coefficients that appear when the image of the j-th basis vector
of V is written as a linear combination of the basis elements of W .

Elaboration. If an element v ∈ V is represented as a column vector cv
∆

whose n entries record
the coefficients used to express it as a linear combination of elements of ∆, then the product
A cv

∆
is a column that lists the coefficients that appear when the image L A

Ω∆
(v) of v is written

as a linear combination of the elements of Ω. In other words, if w = L A
Ω∆

(v), then

A cv
∆ = cw

Ω.

Let us emphasize that it is necessary to specify bases for V and W in order to interpret matrices
as linear maps. In the case that V = F

n and W = F
m, we have the canonical bases. But often

we must deal with vector spaces for which no bases are given or use bases for F
n that are other

than the canonical one.

Proposition 3.3. Suppose V has an ordered basis ∆ = {v1, . . . , vn} and W has a ordered
basis Ω = {w1, . . . , wm}. Let L : V → W be a linear map. There is a unique m × n matrix
A L

Ω∆
= {aij} such that

L(vj) =

m
∑

i=1

aijwi.

Proof . This is an immediate consequence of Proposition 1.1, which says that every element of
W has a unique representation as a linear combination of elements of Ω. /////

Let us review. We have seen that the choice of a basis for a vector space provides way to
uniquely represent its elements as tuples. We have also seen that the choice of bases for the
domain and codomain of a linear map provides a way of representing that map by a matrix.

What happens if we change bases? To examine this, it is convenient to have notation
that keeps track of the bases that are being used. We introduced a version of this, but the
textbook has a nice alternative; see page 44 and following. (All vector spaces we talk about
will be assumed to be finite-dimensional.)
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Knapp’s Notation. If U is a vector space with ordered basis Γ = (u1, . . . , un) and u =
c1u1 + · · · + cnun ∈ U , we let

(

u

Γ

)

:=





c1

...
cn



 .

If L : U → V is a linear map, and V has ordered basis ∆ = (v1, . . . , vk), and L(uj) =
∑k

i=1
aijvj

(cf. equation (∗)) then
(

L

∆Γ

)

:=





a11 · · · a1n

...
ak1 · · · akn



 .

According to the “Fact to Remember”:

The j-th column of
(

L

∆Γ

)

lists the coefficients that appear when the L-image of

the j-th element of Γ is written as a linear combination of the elements of ∆.

We have
(

L

∆Γ

)(

u

Γ

)

=

(

L(u)
∆

)

. (3.1)

If M : V → W , and Ω is an ordered basis for W :

(

M

Ω∆

) (

L

∆Γ

)

=

(

ML

ΩΓ

)

. (3.2)

On the left of (3.2), we have the matrix product of matrices

(

M

Ω∆

)

and

(

L

∆Γ

)

. On the

right, we have the matrix representing the composite map, ML:

U
L

−→ V
M
−→ W.

All of these things follow from the propositions proved above and in the previous lecture. Yet
more detail can be found in the textbook.

The above is useful when bases have been chosen. However, it is very often the case that a
statement or proof is obscure or difficult when expressed in terms of one basis or pair of bases,
but clear and simple in another. So, we ought to have a way to transform representations made
with respect to one basis to representations with respect to another. You will be delighted to
learn that the same notation that we have employed for representing elements and maps with
respect to selected bases also works to perform such transformations. The key idea is to use
the identity map on a given space V , represented in terms of two different bases.

Change of basis. Suppose Γ = (u1, . . . , un) and ∆ = (v1, . . . , vn) are two different ordered
bases for a single vector space V . Let I : V → V be the identity map. By applying (3.1),
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we see that

(

I

∆Γ

)

is a matrix that changes a representation of v ∈ V with respect to Γ to a

representation of V with respect to ∆:
(

I

∆Γ

)(

v

Γ

)

=

(

v

∆

)

.

Applying (3.2), we have
(

I

∆Γ

)(

I

Γ∆

)

=

(

I

∆∆

)

= identity matrix,

so we conclude that
(

I

∆Γ

)

−1

=

(

I

Γ∆

)

.

In other words, the matrix that changes basis from ∆ to Γ is the inverse of the matrix which
changes basis from Γ to ∆.

Example. Let V = F
2, and let Ω = (e1, e2) be the standard basis. Let Γ = (u1, u2), where

u1 = 3e1 + 5e2 and u2 = e1 + 2e2. Let ∆ = (v1, v2), where v1 = 7e1 + 5e2 and v2 = 4e1 + 3e2.

Our goal is to find the matrix

(

I

∆Γ

)

. According to the Scholium,

(

I

ΩΓ

)

=

(

3 1
5 2

)

;

(

I

Ω∆

)

=

(

7 4
5 3

)

.

Thus
(

I

∆Γ

)

=

(

I

∆Ω

)(

I

ΩΓ

)

=

(

3 −4
−5 7

) (

3 1
5 2

)

=

(

−11 −5
20 9

)

.

This tells us that u1 = −11v1 + 20v2 and u2 = −5v1 + 9v2 . Let us check:

−11(7e1 + 5e2) + 20(4e1 + 3e2) = 3e1 + 5e2 = u1,

−5(7e1 + 5e2) + 9(4e1 + 3e2) = e1 + 2e2 = u2.

Example. Suppose L : V → V is an endomorphism (i.e., a linear transformation from V to

itself) and Γ and ∆ are two bases of V . Let A =

(

L

ΓΓ

)

and B =

(

L

∆∆

)

. Then B = C−1AC,

where C =

(

I

Γ∆

)

. The j-th column of C lists the coefficients that are used when the j-th

element of ∆ is written as a linear combination of elements of Γ.

Homework. Do the exercise after Proposition 3.1. Do page 82: 4, 5. Do the following
exercises are from S. Lang, Algebra, 3rd ed., Springer 2002, page 546:1

8. Let N be a strictly upper triangular n×n matrix, That is N = (aij) and aij = 0 if i ≥ j.
Show that Nn = 0.

9. Let E be a vector space over k [k = a field], of dimension n. Let T : E → E be a linear
map such that T is nilpotent, that is Tm = 0 for some positive integer m. Show that
there exists a basis of E over k such the matrix of T with respect to this basis is strictly
upper triangular.

1 If you have trouble, try doing these exercises for n = 2 and n = 3, then see if you can
generalize.
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