
M7210 Lecture 7. Vector Spaces Part 4, Dual Spaces Wednesday September 5, 2012

Assume V is an n-dimensional vector space over a field F.

Definition. The dual space of V , denoted V ′ is the set of all linear maps from V to F.

Comment. F is an ambiguous object. It may be regarded:

(a) as a field,
(b) vector space over F,
(c) as a vector space equipped with basis, {1}.

It is always important to bear in mind which of the three objects we are thinking about. In the
definition of V ′, we use (c). The distinctions are often pushed into the background, but let us keep
them in clear view for the remainder of this paragraph. Suppose V has basis E = {e1, e2, . . . , en}.
If w ∈ V ′, then for each ei, there is a unique scalar ω(ei) such that w(ei) = ω(ei) 1. Then

(

w

{1}E

)

=
(

ω(e1) ω(e2) · · · ω(en)
)

. (1)

The columns (of height 1) on the right hand side are the coefficients required to write the images
of the basis elements in E in terms of the basis {1}. (The definition of the matrix of a linear map
that we gave in the last lecture demands that each entry in the matrix be an element of the scalar
field, not of a vector space.) The notation w(ei) = ω(ei) 1 is a reminder that w(ei) is an element of
the vector space F, while ω(ei) is an element of the field F. But scalar multiplication of elements
of the vector space F by elements of the field F is good old fashioned multiplication ∗ : F× F → F.
Accordingly, as long as we are dealing with F in sense (c), we can assume w(ei) = ω(ei).

∗

Lemma. Let V and E be as above. The map CE : V ′ → F
n defined by

CE(w) =
(

w(e1), w(e2), · · · , w(en)
)

.

Proof . We show CE is injective. Suppose CE(w) = CE(z) for some w, z ∈ V ′. Then w(ei) = z(ei)
for i = 1, . . . , n. We need to show w = v, i.e., w(v) = z(v) for all v ∈ V . Let v =

∑n

i=1
aiei be any

element of V . Then w(v) =
∑n

i=1
aiw(ei)) =

∑n

i=1
aiz(ei)) = z(v), so the function is injective.

We show the function is surjective. Let (b1, . . . , bn) ∈ F
n. We need to find w ∈ V ′ such that

CE(w) = (b1, . . . , bn). By the universal mapping property of bases, there is a unique linear map w

from V to F such that w(ei) = bi. Thus, the map is surjective (and hence bijective). Finally, we
need to show that CE is linear. Suppose w, z ∈ V ′ and a, b ∈ F. Then (aw+bz)(ei) = aw(ei)+bz(ei)
by definition of function addition. Thus, CE(aw + bz) = aCE(w) + bCE(z). /////

Comment. We see that V ′ is a vector space of dimension equal to the dimension of V . The map
that identifies V ′ with F

n depends on the choice of basis for V .

Comment. It is natural to regard the elements of V ′ as row vectors, as in equation (1). We have
been regarding the elements of V as column vectors. A row of length n is a 1×n matrix that acts
on an n × 1 column by matrix multiplication.

The standard basis for F
n (viewed as a row space) consists of the row vectors δi, i = 1, . . . , n. For

each i, all the entries of δi are 0 except in the i-th coordinate, where it has a 1:

δij = (δi)j =

{

1, if i = j;
0, if i 6= j.

∗ Later in this course, we will encounter the idea of a forgetful functor . This is an abstract
device that enables us to deal with distinctions like those we have been making here in an efficient
manner in instances when they are really important.
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Suppose ei ∈ E. We define e′i by stipulating its value at each ej ∈ E as follows:

e′i(ej) = δij .

Clearly, any w ∈ V ′ can be written as a linear combination of the e′i and also clearly there are no
non-trivial linear relations among the e′i. Thus, the e′i are a basis for V ′. We call it E′, the dual
basis of E. Note that CE(e′i) = δi.

Geometric/Algebraic Perspectives

Mathematicians intuitively view some objects as geometric and others as algebraic. For example,
in analytic geometry we treat the plane R

2 as a geometric object and we look at the subsets of R
2

defined by the vanishing of one or more functions, e.g., { (x, y) | f(x, y) = 0 & g(x, y) = 0 }. On the
other hand, the polynomials themselves may be added and multiplied, and the set of all of them
forms a ring R[x, y].

Even though V and V ′ are both vector spaces of the same dimension (assuming finite dimension),
it is sometimes useful to think of V as a geometric object in which we might define subsets by the
vanishing of linear maps w : V → F and to think of V ′ as an algebraic object.2

Definition. If U is a subspace of V , then Ann(U) := {w ∈ V ′ | w(u) = 0 for all u ∈ U }.

Proposition. If V is finite-dimensional and U is a subspace of V ,
(a) dimU + dimAnn(U) = dimV .
(b) If f ∈ U ′, then there is g ∈ V ′ such that g|U = f .
(c) If y ∈ V \ U , there is g ∈ Ann(U) such that g(y) = 1.

Proof . (Sketch) (a) Let { v1, . . . , vn } be a basis of V with the first r elements being a basis of
U . Then v′r+1, . . . , v

′

n are contained in AnnU (why?) and they span AnnU (why?). Hence they
form a basis for Ann(U) (why?). (b) v′1|U , . . . , v′r |U span U ′ (why?). So every element of U ′ is of
the form c1v

′

1|U + . . . + crv
′

r|U =
(

c1v
′

1 + . . . + crv
′

r

)

|U . (c) We can construct { v1, . . . , vn } so that
vr+1 = y.

Exercise. If S is a subset of V , define

Ann(S) := {w ∈ V ′ | w(s) = 0 for all s ∈ S }.

(This generalizes the definition above to subsets.) If T is a subset of V ′, define

Z(T ) := {v ∈ V | t(v) = 0 for all t ∈ T }.

Show:
a. Ann(S) is a subspace of V ′.
b. Z(T ) is a subspace of V .
c. Z(Ann(S)) is a subspace of V spanned by S.

2 One place where we do exactly this is in defining the tangent space and the cotangent space
of a real manifold at a point P . The tangent space plays a geometric role, representing the linear
structure of infinitesimal piece of the manifold about P . The cotangent space plays an algebraic
role, representing the linear part of the germs at P of the smooth R-valued functions that vanish
at P . The cotangent space at P is the dual of the tangent space at P .
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