
M7210 Lecture 10. Wednesday September 12, 2012

Multilinear Functionals

Let V be a vector space of dimension n over F. We will use bold letters v to stand for k-tuples of elements of V ,
i.e., elements of V k.1

Definition. A k-multilinear functional on V is a function f : V k → F that is linear in each vector variable
separately. I.e., for all a, b ∈ F:

a f(v1,v2, . . . ,vk) + b f(v′
1,v2, . . . ,vk) = f(av1 + bv′

1,v2, . . . ,vk)

a f(v1, . . . ,vi, . . .vk) + b f(v1, . . . ,v
′
i, . . . ,vk) = f(v1, . . . , avi + bv′

i, . . . ,vk)

etc.

In other words, if we hold all the vector variables in all places except the ith fixed, then the resulting function
from V to F is linear.

Example. Suppose {ε1, ε2, ε3} is a basis for V and suppose aij ∈ F for i = 1, 2, 3, j = 1, 2. Let

a1 = a11ε1 + a12ε2 + a13ε3 ∈ V,

a2 = a21ε1 + a22ε2 + a23ε3 ∈ V,

a = (a1,a2) ∈ V 2

If f : V 2 → F is 2-multilinear, then

f(a) = f(a1,a2)

= a11f(ε1,a2) + a12f(ε2,a2) + a13f(ε3,a2)

= a11

(
a21f(ε1, ε1) + a22f(ε1, ε2) + a23f(ε1, ε3)

)

+ a12

(
a21f(ε2, ε1) + a22f(ε2, ε2) + a23f(ε2, ε3)

)

+ a13

(
a21f(ε3, ε1) + a22f(ε3, ε2) + a23f(ε3, ε3)

)
.

Extending this pattern, we see that if V has a basis E = {ε1, . . . , εn}, f is k-multilinear and {aij} is a k×n matrix
with entries in F, ai = ai1ε1 + · · · + ainεn ∈ V and a = (a1, . . . ,ak) ∈ V k, then

f(a) =
∑

φ:[k]→[n]

a1φ(1) · · · akφ(k)f(εφ(1), . . . , εφ(k)). (1)

Here, [k] := {1, 2, . . . , k}, [n] := {1, 2, . . . , n}, and we are summing over all possible functions.

Exercise 1. (a) Show that the set of all k-multilinear functionals on V is a sub-vector-space of F V k

(the vector
space of functions from V k to F. (b) Show that if f is a k-multilinear functional on V and L : V → V is any linear
function, then f ◦ (L, . . . , L) is k-multilinear, where f ◦ (L, . . . , L)(v1 . . . ,vk) := f

(
L(v1), . . . , L(vk)

)
.

Exercise 2. (a) Let E = {ε1, . . . , εn} be a basis of V . Suppose that ω : Ek → F is any function. (In other words,
ω is simply an assignment of elements of F to k-tuples of basis vectors.) Then, there is a unique k-multilinear
functional ω : V k → F such that ω|E = ω. (b) Show that the vector space of all k-multilinear functionals on V
has dimension nk.

Alternating multilinear functionals

Definition. A k-multilinear functional f on V is said to be alternating if f(w) = 0 whenever w ∈ V k has a
repeated entry.

Exercise 3. Show that the set of all alternating k-multilinear functionals on V is a vector space. Show that if f
is alternating, then so is f ◦ (L, . . . , L); cf. Exercise 1.

1 Our textbook makes an effort to work with row vectors, and uses notation that reflects this. For example,
the book uses et

i to refer to the row associated with the column vector ei in the canonical basis of F
n. I have

decided to give a more abstract presentation, but have chosen my notation to remain compatible with the book.
For example, I use εi where the book might refer to et

i. (This whole footnote can be ignored, unless you want to
look for the precise parallels between my notes and the book’s treatment of this topic.)
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Lemma. Suppose f is k-multilinear. Then f is alternating if and only if

f(v) = −f(v′) whenever v′ ∈ V k is obtained from v ∈ V k by transposing two entries. (τ)

Proof . Alternating implies (τ): Let f̂ be the functional that we obtain by holding fixed all arguments except those
that are switched in passing from v to v′ Then

f̂(v1,v2) + f̂(v2,v1) = f̂(v1,v2) + f̂(v1,v1) + f̂(v2,v1) + f̂(v2,v2)

= f̂(v1,v1 + v2) + f̂(v2,v1 + v2)

= f̂(v1 + v2,v1 + v2)

= 0.

Thus, f(v) + f(v′) = 0, so f(v) = −f(v′).

(τ) implies alternating: Exercise 4. /////

Determinants

Lemma 1. Suppose dimV = n. The space of all alternating n-multilinear functionals on V has dimension ≤ 1.

Proof. Let E be a basis for V . By the exercise, f is determined by its restriction to En. Since f is alternating, it
vanishes on any n-tuple in En with a repeated entry. Any n-tuple with no repeats is a permutation of (ε1, . . . , εn),
and that value of f at any such element is equal to ±f(ε1, . . . , εn). /////

Lemma 2. Suppose dimV = n. There is a non-zero alternating n-multilinear functional on V .

Proof . Let {ε1, . . . , εn} be a basis for V . Define a function En → F by setting (εσ(1), . . . , εσ(n)) 7→ sgn σ for each
permutation σ of {1, . . . , n}, and setting (εj(1), . . . , εj(n)) 7→ 0 if j is any function from {1, . . . , n} to {1, . . . , n}
that is not injective. By Exercise 1, this defines a non-zero n-multlinear functional on V , which we call DE . If
a ∈ V k and {aij} is the matrix of coefficients that we use to write a in terms of E , as in Equation (1), then we
have:

DE(a) =
∑

σ∈Sn

a1σ(1) · · · anσ(n) sgn σ, (2)

where Sn is the set of permutations of [n] We need to show DE it is alternating. So, suppose τ ∈ Sn is a
transposition and aτ is defined by (aτ )i = aτ(i). Then

DE(aτ ) =
∑

σ∈Sn

aτ(1)σ(1) · · · aτ(n)σ(n) sgn σ

=
∑

σ∈Sn

a1στ(1) · · · anστ(n) sgn σ (recall τ = τ−1)

=
∑

σ∈Sn

a1σ(1) · · · anσ(n) sgn στ

= −
∑

σ∈Sn

a1σ(1) · · · anσ(n) sgn σ

= −DE (a). /////

Comment. In every one of the sums in the proof above, each of the products a1σ(1)a2σ(2) · · · anσ(n), σ ∈ Sn occurs
in exactly one term with a coefficient of either 1 or −1.

Note that we can define D(A) for an arbitrary n × n matrix A with entries from F using (2). We can interpret
this as the case of (2) where E is the standard basis for F

n, viewed as a row space.

Homework. Read the rest of the section on determinants. Do the four exercises in these notes. Also, attempt
Problem 40, page 86.
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