M7210 Lecture 10.

Multilinear Functionals

Let V be a vector space of dimension n over \mathbb{F} . We will use bold letters **v** to stand for k-tuples of elements of V, i.e., elements of $V^{k,1}$

Definition. A k-multilinear functional on V is a function $f : V^k \to \mathbb{F}$ that is linear in each vector variable separately. I.e., for all $a, b \in \mathbb{F}$:

$$a f(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k) + b f(\mathbf{v}'_1, \mathbf{v}_2, \dots, \mathbf{v}_k) = f(a\mathbf{v}_1 + b\mathbf{v}'_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$$
$$a f(\mathbf{v}_1, \dots, \mathbf{v}_i, \dots, \mathbf{v}_k) + b f(\mathbf{v}_1, \dots, \mathbf{v}'_i, \dots, \mathbf{v}_k) = f(\mathbf{v}_1, \dots, a\mathbf{v}_i + b\mathbf{v}'_i, \dots, \mathbf{v}_k)$$
$$etc.$$

In other words, if we hold all the vector variables in all places *except* the i^{th} fixed, then the resulting function from V to \mathbb{F} is linear.

Example. Suppose $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ is a basis for V and suppose $a_{ij} \in \mathbb{F}$ for i = 1, 2, 3, j = 1, 2. Let

$$\mathbf{a}_1 = a_{11}\varepsilon_1 + a_{12}\varepsilon_2 + a_{13}\varepsilon_3 \in V,$$

$$\mathbf{a}_2 = a_{21}\varepsilon_1 + a_{22}\varepsilon_2 + a_{23}\varepsilon_3 \in V,$$

$$\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2) \in V^2$$

If $f: V^2 \to \mathbb{F}$ is 2-multilinear, then

$$\begin{split} f(\mathbf{a}) &= f(\mathbf{a}_1, \mathbf{a}_2) \\ &= a_{11}f(\varepsilon_1, \mathbf{a}_2) + a_{12}f(\varepsilon_2, \mathbf{a}_2) + a_{13}f(\varepsilon_3, \mathbf{a}_2) \\ &= a_{11} \Big(a_{21}f(\varepsilon_1, \varepsilon_1) + a_{22}f(\varepsilon_1, \varepsilon_2) + a_{23}f(\varepsilon_1, \varepsilon_3) \Big) \\ &+ a_{12} \Big(a_{21}f(\varepsilon_2, \varepsilon_1) + a_{22}f(\varepsilon_2, \varepsilon_2) + a_{23}f(\varepsilon_2, \varepsilon_3) \Big) \\ &+ a_{13} \Big(a_{21}f(\varepsilon_3, \varepsilon_1) + a_{22}f(\varepsilon_3, \varepsilon_2) + a_{23}f(\varepsilon_3, \varepsilon_3) \Big). \end{split}$$

Extending this pattern, we see that if V has a basis $\mathcal{E} = \{\varepsilon_1, \ldots, \varepsilon_n\}$, f is k-multilinear and $\{a_{ij}\}$ is a $k \times n$ matrix with entries in \mathbb{F} , $\mathbf{a}_i = a_{i1}\varepsilon_1 + \cdots + a_{in}\varepsilon_n \in V$ and $\mathbf{a} = (\mathbf{a}_1, \ldots, \mathbf{a}_k) \in V^k$, then

$$f(\mathbf{a}) = \sum_{\phi:[k] \to [n]} a_{1\phi(1)} \cdots a_{k\phi(k)} f(\varepsilon_{\phi(1)}, \dots, \varepsilon_{\phi(k)}).$$
(1)

Here, $[k] := \{1, 2, \dots, k\}, [n] := \{1, 2, \dots, n\}$, and we are summing over all possible functions.

Exercise 1. (a) Show that the set of all k-multilinear functionals on V is a sub-vector-space of F^{V^k} (the vector space of functions from V^k to \mathbb{F} . (b) Show that if f is a k-multilinear functional on V and $L: V \to V$ is any linear function, then $f \circ (L, \ldots, L)$ is k-multilinear, where $f \circ (L, \ldots, L)(\mathbf{v}_1, \ldots, \mathbf{v}_k) := f(L(\mathbf{v}_1), \ldots, L(\mathbf{v}_k))$.

Exercise 2. (a) Let $\mathcal{E} = \{\varepsilon_1, \ldots, \varepsilon_n\}$ be a basis of V. Suppose that $\omega : \mathcal{E}^k \to \mathbb{F}$ is any function. (In other words, ω is simply an assignment of elements of \mathbb{F} to k-tuples of basis vectors.) Then, there is a unique k-multilinear functional $\overline{\omega} : V^k \to \mathbb{F}$ such that $\overline{\omega}|_{\mathcal{E}} = \omega$. (b) Show that the vector space of all k-multilinear functionals on V has dimension n^k .

Alternating multilinear functionals

Definition. A k-multilinear functional f on V is said to be alternating if $f(\mathbf{w}) = 0$ whenever $\mathbf{w} \in V^k$ has a repeated entry.

Exercise 3. Show that the set of all alternating k-multilinear functionals on V is a vector space. Show that if f is alternating, then so is $f \circ (L, \ldots, L)$; cf. Exercise 1.

¹ Our textbook makes an effort to work with row vectors, and uses notation that reflects this. For example, the book uses e_i^t to refer to the row associated with the column vector e_i in the canonical basis of \mathbb{F}^n . I have decided to give a more abstract presentation, but have chosen my notation to remain compatible with the book. For example, I use ε_i where the book might refer to e_i^t . (This whole footnote can be ignored, unless you want to look for the precise parallels between my notes and the book's treatment of this topic.)

Lemma. Suppose f is k-multilinear. Then f is alternating if and only if

$$f(\mathbf{v}) = -f(\mathbf{v}')$$
 whenever $\mathbf{v}' \in V^k$ is obtained from $\mathbf{v} \in V^k$ by transposing two entries. (τ)

Proof. Alternating implies (τ) : Let \hat{f} be the functional that we obtain by holding fixed all arguments except those that are switched in passing from **v** to **v'** Then

$$\begin{aligned} \hat{f}(\mathbf{v}_1, \mathbf{v}_2) + \hat{f}(\mathbf{v}_2, \mathbf{v}_1) &= \hat{f}(\mathbf{v}_1, \mathbf{v}_2) + \hat{f}(\mathbf{v}_1, \mathbf{v}_1) + \hat{f}(\mathbf{v}_2, \mathbf{v}_1) + \hat{f}(\mathbf{v}_2, \mathbf{v}_2) \\ &= \hat{f}(\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2) + \hat{f}(\mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2) \\ &= \hat{f}(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2) \\ &= 0. \end{aligned}$$

Thus, $f(\mathbf{v}) + f(\mathbf{v}') = 0$, so $f(\mathbf{v}) = -f(\mathbf{v}')$. (τ) implies alternating: **Exercise 4.**

Determinants

Lemma 1. Suppose dim V = n. The space of all alternating *n*-multilinear functionals on V has dimension ≤ 1 .

Proof. Let \mathcal{E} be a basis for V. By the exercise, f is determined by its restriction to \mathcal{E}^n . Since f is alternating, it vanishes on any *n*-tuple in \mathcal{E}^n with a repeated entry. Any *n*-tuple with no repeats is a permutation of $(\varepsilon_1, \ldots, \varepsilon_n)$, and that value of f at any such element is equal to $\pm f(\varepsilon_1, \ldots, \varepsilon_n)$.

Lemma 2. Suppose dim V = n. There is a non-zero alternating *n*-multilinear functional on V.

Proof. Let $\{\varepsilon_1, \ldots, \varepsilon_n\}$ be a basis for V. Define a function $\mathcal{E}^n \to \mathbb{F}$ by setting $(\varepsilon_{\sigma(1)}, \ldots, \varepsilon_{\sigma(n)}) \mapsto \operatorname{sgn} \sigma$ for each permutation σ of $\{1, \ldots, n\}$, and setting $(\varepsilon_{j(1)}, \ldots, \varepsilon_{j(n)}) \mapsto 0$ if j is any function from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$ that is not injective. By Exercise 1, this defines a non-zero n-multinear functional on V, which we call $D_{\mathcal{E}}$. If $\mathbf{a} \in V^k$ and $\{a_{ij}\}$ is the matrix of coefficients that we use to write \mathbf{a} in terms of \mathcal{E} , as in Equation (1), then we have:

$$D_{\mathcal{E}}(\mathbf{a}) = \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)} \operatorname{sgn} \sigma,$$
(2)

/////

where S_n is the set of permutations of [n] We need to show $D_{\mathcal{E}}$ it is alternating. So, suppose $\tau \in S_n$ is a transposition and \mathbf{a}^{τ} is defined by $(\mathbf{a}^{\tau})_i = \mathbf{a}_{\tau(i)}$. Then

$$D_{\mathcal{E}}(\mathbf{a}^{\tau}) = \sum_{\sigma \in S_n} a_{\tau(1)\sigma(1)} \cdots a_{\tau(n)\sigma(n)} \operatorname{sgn} \sigma$$

$$= \sum_{\sigma \in S_n} a_{1\sigma\tau(1)} \cdots a_{n\sigma\tau(n)} \operatorname{sgn} \sigma \qquad (\operatorname{recall} \tau = \tau^{-1})$$

$$= \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)} \operatorname{sgn} \sigma \tau$$

$$= -\sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)} \operatorname{sgn} \sigma$$

$$= -D_{\mathcal{E}}(\mathbf{a}). \qquad /////$$

Comment. In every one of the sums in the proof above, each of the products $a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$, $\sigma \in S_n$ occurs in exactly one term with a coefficient of either 1 or -1.

Note that we can define D(A) for an arbitrary $n \times n$ matrix A with entries from \mathbb{F} using (2). We can interpret this as the case of (2) where \mathcal{E} is the standard basis for \mathbb{F}^n , viewed as a row space.

Homework. Read the rest of the section on determinants. Do the four exercises in these notes. Also, attempt Problem 40, page 86.