
M7210 Lecture 13 Friday September 21, 2012

A. Orthogonality and orthonormal bases

Let V be an inner-product space (real or Hermitian). The inner product is denoted 〈u, v〉
and the associated norm is ||v|| :=

√
〈v, v〉.

Definition. We say u, v ∈ V are orthogonal—and we write u ⊥ v—if 〈u, v〉 = 0. We say
u is a unit vector if ||u|| = 1. An orthonormal set is a set of unit vectors that are pairwise
orthogonal.

Exercise. Suppose w1, . . . , wk are pairwise orthogonal. Then

||w1 + · · ·+ wk||
2 = ||w1||

2 + · · ·+ ||wk||
2.

Hint: Use the relevant definitions, Luke.

Lemma. Any set of non-zero vectors that are pairwise orthogonal is independent.

Proof . Suppose w1, . . . , wk ∈ V \ {0} are pairwise orthogonal. If c1w1 + · · · + ckwk = 0,
then ||c1w1 + · · · + ckwk||

2 = |c1|
2||w1||

2 + · · · + |ck|
2||wk||

2 = 0, so |ci| ||wi|| = 0 for each
i, and since ||wi|| 6= 0, each ci = 0. /////

Observe that if u is a unit vector and v is any vector, then u ⊥
(
v − 〈v, u〉 u

)
. The

demonstration is instructive:

〈
u, v − 〈v, u〉 u

〉
= 〈u, v〉 −

〈
u, 〈v, u〉 u

〉
= 〈u, v〉 − 〈v, u〉〈u, u〉 = 0.

Many people call 〈v, u〉 u the projection of v onto u and call v − 〈v, u〉 u the component of

v orthogonal to u.

Lemma. Suppose {u1, . . . , uk} ⊆ V is orthonormal and v ∈ V . Let w =
∑k

i=1
〈v, ui〉ui.

Then
uj ⊥ (v − w) , for each j = 1, . . . , k, (1)

and
w ⊥ (v − w). (2)

Proof . First, observe that when we expand 〈uj, w〉 using conjugate-linearity in the second
variable, every term but the jth vanishes, the reason being that 〈ui, uj〉 = 0 unless i = j.
Thus,

〈uj , w〉 =
〈
uj , 〈v, uj〉uj

〉
= 〈uj, v〉,

and equation (1) follows. Using this and linearity in the first variable, we get:

〈w, w〉 = 〈w, v〉.

Equation (2) follows. /////
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The lemma shows that any v ∈ V can be written as the sum of an element w of a the
subspace U spanned by u1, . . . , uk plus an element v−w that is orthogonal to every element
of U . The manner in which this can be done is unique, for if v = c1u1 + · · · + ckuk + z,
where ei ⊥ z for each i = 1, . . . , k, then 〈v, ui〉 = ci, for i = 1, . . . , k, and consequently
z = v − w.

Gram-Schmidt orthogonalization. Suppose Uk ⊆ V is spanned by an orthonormal set
{u1, . . . , uk} ⊆ V , and Uk is not all of V . Let v be any element of V \ Uk, and select w as
in the lemma. Let c = ||v −w|| and let uk+1 := c−1(v −w). Then {u1, . . . , uk, uk+1} is an
orthonormal set. Let Uk+1 be the subspace it spans. Obviously, we can continue in this
manner as long as Um 6= V .

Orthogonal Projection. Given any subspace U of V , the ideas in the lemma enable us
decompose V into sum of orthogonal subspaces

V = U ⊕ U⊥.

Select an orthogonal basis {u1, . . . , uk} for U , and then extend it to an orthogonal basis
{u1, . . . , uk, uk+1, . . . , un} for V , and let U⊥ be the subspace spanned by {uk+1, . . . , un}.

Exercise. Write the projection and injection maps for this decomposition in terms of the
selected basis.

B. Inner products and the dual space

The material in this subsection is not dependent on the results above concerning orthogo-
nality. Recall that V ′ denotes the dual space of V :

V ′ := { ℓ : V → F | ℓ linear }.

The real case

Proposition. Suppose V is a real inner-product space. The function

φ : V → V ′; v 7→ φv

defined by
φv(u) := 〈u, v〉

(i.e., φv = 〈·, v〉) is a bijective linear map.

Proof . By linearity in the second variable, φcv = cφv and φv+w = φv + φw. Thus φ is a
linear map. Since φv(v) 6= 0 when v 6= 0, the kernel of φ is 0. Since dim V = dim V ′, φ is
bijective. /////

The Hermitian case. For Hermitian inner-product spaces, the map described in the propo-
sition above is not linear (and—if you thought you might rescue yourself by switching
variables—the map v 7→ 〈v, ·〉 does not have values in V ′). One way to deal with this is

to introduce the so-called anti-module of V , denoted Ṽ , which is a vector space with the
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same elements and the same addition as V , but in which scalar multiplication differs by
conjugation. In order to describe the scalar multiplication in Ṽ , it is convenient to adopt
a notation that makes it evident which space we are in. When we want v to be understood
as an element of Ṽ , we draw a tilde over it. Now, we can be explicit about the scalar
multiplicationin Ṽ . It is defined by cṽ = c̃v.

Exercise. Show that a subset {v1, . . . , vk } of V spans (respectively, is independent in,
respectively, is a basis of) V if and only if {ṽ1, . . . , ṽk } has the corresponding property

with respect to Ṽ . Conclude that dim V = dim Ṽ .

Proposition. Suppose V is a complex vector space with Hermitian inner-product. The
function

φ : Ṽ → V ′; v 7→ φv

defined by
φṽ(u) := 〈u, v〉

(i.e., φṽ = 〈·, v〉) is a bijective linear map.

Proof . We have φcṽ(u) = 〈u, cv〉 = c〈u, v〉 = cφṽ(u). The rest of the proof is just as in the
real case. /////

Comments. There are several other ways to approach the issue in this section. See Knapp’s
Theorem 3.12 (page 98) for an alternate approach. I will also supply copies from the nice
book by Axler, Linear Algebra Done Right. Lang uses anti-modules; see his Algebra, page
531.

From the propositions we can conclude:

Theorem. If ℓ : V → F is any linear functional on V , then there is a unique wℓ ∈ V such
that

ℓ(v) = 〈v, wℓ〉 for all v ∈ V . /////

Homework: Exercises above. Hand in P. 111–112: 3, 4, 6, 8. Also, try: P.114: 24–28.
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