M7210 Lecture 14 Monday September 24, 2012

Adjoints and the Spectral Theorem
I will be describing the highlights of section II1.2 of Knapp. As previously, we assume

V' is a finite-dimensional inner-product space over F =R or F = C.

If L:V — V is a linear map, we may form the function
(u,v) — (L(u),v) : VxV —F.

This gives us a map from Lin(V, V'), the vector-space of all linear maps from V to V, to Sesq(V x
V,F), the vector space of all sesquilinear maps from V x V to F:

L (L(-),-) : Lin(V, V) — Sesq(V x V,F).

This map is injective, because if L is not the zero map, then L(u) # 0 for some u € V', and hence
(L(-),) is non-zero, as we can see by evaluating it at (u, L(u)).

Proposition. Let L : V — V be a linear map. For each u € V, there is a unique L*(u) € V such
that
(L(v),u) = (v, L*(u)) for allveV.

Moreover, for any u,uy,us € V, L*(cu) = cL*(u) and L*(uy + ug) = L*(uy) + L*(u2).

Proof. Existence and uniqueness follows from the last theorem in Lecture 13. For any fixed u, we
have for all v € V: (v, L*(cu)) = (L(v), cu) = ¢(L(v),u) = (v,cL*(u)). Thus, L*(cu) = cL*(u) (by
the uniqueness part of the last theorem in the last lecture. Additivity follows similarly. 111/

Definition. If L = L*, then L is said to be self-adjoint.

Comment. This definition has the advantage that it is independent of any basis, but it has the
disadvantage that it makes the adjoint seem mysteriously abstract. In fact, if A is the matrix of L
relative to selected orthonormal bases on the domain and codomain (each a copy of V'), then the
the matrix of L* relative to these bases is the congugate transpose of A. So, you can easily obtain
notation for L* if you need to do concrete computations. See page 99-100 of Knapp for details.

Ezample. (Cf. Proposition 3.16, page 100.) Suppose U is a subspace of V. Let
Ut ={veV]vLluforalueU}

be the orthogonal complement of U. Then, each element of v € V' can be written uniquely as a
sum 7y (v) + 7y (v), with 7y (v) € U and w0 (v) € UL, T assert that 7y is self-adjoint. Indeed,
for any v,w € V:

(v, 777 (w)) = (mv (v), w) = (7 (v), 70 (W)) = (v, 70 (W),

Caution. There are product decompositions of V that are not “orthogonal”. Indeed, if U and
W are any non-trivial subspaces of V with UNW = {0} and dimU + dimW = dimV, then
V =U @ W as a vector-space sum/product. As a matter of fact, given specific U and W with
these properties, there are many different mappings that could serve as projections nyy : V. — U
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and my : V — W. Even when U 1L W with respect to some inner product, there are projections
that are not the orthogonal ones. It is very important to distinguish clearly between constructions
that respect only the vector-space structure and constructions that respect the inner product. In
the example above, the projection must respect the inner product.

Exercise. Call V, with inner product (-,-) the orthogonal direct sum of Vi and V5 if:

e V=V & Vs as vector spaces,

e V7, and V5 each has its own inner product, (-,-)1, (-, )2 respectively, and

o ((v1,v2), (w1, wa)) = (v1,w1)1 + (v2, wa)a.
(a) Suppose V = S @ St is an orthogonal direct sum. Also, suppose L : V — V is self-adjoint,
and L(S) C S. Show that the restriction of L to S is self-adjoint.
(b) Suppose V is the orthogonal direct sum of Vi and V,. Find surjective linear functions j3; :
V — V; so that V is the vector-space product with projections (1, (2, but

(v.w) # (Bu(v). Br(w), + (Ba(v), Ba(w)),.

Proposition. (3.17, part 1) Suppose L : V' — V is self-adjoint. Then
(a) (L(v),v) € R for every v e V.
(b) Every eigenvalue of L is real.

Proof. a) If L = L*, then
(L(v),v) = (v, L(v)) = (L(v),v).
b) If L(v) = Av, then
Mv,v) = (v, v) = (M, v) = Mo, v).

Lemma. (3.20) If L : V — V is self-adjoint, then
(a) eigenvectors for distinct eigenvalues of L are orthogonal, and
(b) for any subspace S C V, if L(S) C S, then L(S+) C S+.

Proof. (a) Suppose v; and vq are eigenvectors with distinct eigenvalues A\ # Ao. By 3.17, part 1,
A1, A2 € R. Then

()\1 - )\2)<’U1,’U2> = ()\1U1,U2> — <U1,>\1U2> = (L(Ul),l}2> — <’U1,L(U2)> =0.

Thus (vi,ve) = 0. For part (b), if L(S) C S, then for any s € S and s+ € S+,

0= (L(s),s") = (s, L(s™)). /1117

Theorem. (F = C case of the Spectral Theorem, 3.21) Suppose V' is a complex inner-product
space and L : V — V is self-adjoint. Then V' has an orthonormal basis consisting of eigenvectors
of L.

Proof. Let V) be the eigenspace for L with eigenvalue A\. Then the characteristic polynomial of L
has at least one root, A1, and so we have a nontrivial orthogonal decomposition V = V), @ V/\ll.
Moreover, L(Vy,) € Vi, and L(Vyt) C Vit Take any orthogonal basis for Vy,. By part (a) of the
exercise above, VAL1 is an inner product space and the restriction of L to Vj1 is self-adjoint. So by
induction (on dimension), we have a basis for VAL1 satisfying the requirements of the theorem, and
combined with the basis for Vy,, we are done. /1]

Theorem 3.21, with F = R can be approached two ways (at least). In Knapp, we deduce it from
the complex case. Another approach is to show that a self-adjoint operator on a real space has an
eigenvector, then imitate the above.



