
M7210 Lecture 14 Monday September 24, 2012

Adjoints and the Spectral Theorem

I will be describing the highlights of section III.2 of Knapp. As previously, we assume

V is a finite-dimensional inner-product space over F = R or F = C.

If L : V → V is a linear map, we may form the function

(u, v) 7→ 〈L(u), v〉 : V × V → F.

This gives us a map from Lin(V, V ), the vector-space of all linear maps from V to V , to Sesq(V ×
V, F), the vector space of all sesquilinear maps from V × V to F:

L 7→ 〈L(·), ·〉 : Lin(V, V ) → Sesq(V × V, F).

This map is injective, because if L is not the zero map, then L(u) 6= 0 for some u ∈ V , and hence
〈L(·), ·〉 is non-zero, as we can see by evaluating it at

(

u,L(u)
)

.

Proposition. Let L : V → V be a linear map. For each u ∈ V , there is a unique L∗(u) ∈ V such
that

〈L(v), u〉 = 〈v, L∗(u)〉 for all v ∈ V .

Moreover, for any u, u1, u2 ∈ V , L∗(cu) = cL∗(u) and L∗(u1 + u2) = L∗(u1) + L∗(u2).

Proof . Existence and uniqueness follows from the last theorem in Lecture 13. For any fixed u, we
have for all v ∈ V : 〈v, L∗(cu)〉 = 〈L(v), cu〉 = c〈L(v), u〉 = 〈v, cL∗(u)〉. Thus, L∗(cu) = cL∗(u) (by
the uniqueness part of the last theorem in the last lecture. Additivity follows similarly. /////

Definition. If L = L∗, then L is said to be self-adjoint .

Comment. This definition has the advantage that it is independent of any basis, but it has the
disadvantage that it makes the adjoint seem mysteriously abstract. In fact, if A is the matrix of L
relative to selected orthonormal bases on the domain and codomain (each a copy of V ), then the
the matrix of L∗ relative to these bases is the congugate transpose of A. So, you can easily obtain
notation for L∗ if you need to do concrete computations. See page 99-100 of Knapp for details.

Example. (Cf. Proposition 3.16, page 100.) Suppose U is a subspace of V . Let

U⊥ = {v ∈ V | v ⊥ u for all u ∈ U }

be the orthogonal complement of U . Then, each element of v ∈ V can be written uniquely as a
sum πU (v) + πU⊥(v), with πU (v) ∈ U and πU⊥(v) ∈ U⊥. I assert that πU is self-adjoint. Indeed,
for any v,w ∈ V :

〈v, π∗

U (w)〉 = 〈πU (v), w〉 = 〈πU (v), πU (w)〉 = 〈v, πU (w)〉.

Caution. There are product decompositions of V that are not “orthogonal”. Indeed, if U and
W are any non-trivial subspaces of V with U ∩ W = {0} and dimU + dimW = dimV , then
V = U ⊕ W as a vector-space sum/product. As a matter of fact, given specific U and W with
these properties, there are many different mappings that could serve as projections πU : V → U
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and πW : V → W . Even when U ⊥ W with respect to some inner product, there are projections
that are not the orthogonal ones. It is very important to distinguish clearly between constructions
that respect only the vector-space structure and constructions that respect the inner product. In
the example above, the projection must respect the inner product.

Exercise. Call V , with inner product 〈·, ·〉 the orthogonal direct sum of V1 and V2 if:
• V = V1 ⊕ V2 as vector spaces,
• V1, and V2 each has its own inner product, 〈·, ·〉1, 〈·, ·〉2 respectively, and
•

〈

(v1, v2), (w1, w2)
〉

= 〈v1, w1〉1 + 〈v2, w2〉2.

(a) Suppose V = S ⊕ S⊥ is an orthogonal direct sum. Also, suppose L : V → V is self-adjoint,
and L(S) ⊆ S. Show that the restriction of L to S is self-adjoint.

(b) Suppose V is the orthogonal direct sum of V1 and V2. Find surjective linear functions βi :
V → Vi so that V is the vector-space product with projections β1, β2, but

〈

v,w
〉

6=
〈

β1(v), β1(w)
〉

1
+

〈

β2(v), β2(w)
〉

2
.

Proposition. (3.17, part 1) Suppose L : V → V is self-adjoint. Then
(a) 〈L(v), v〉 ∈ R for every v ∈ V .
(b) Every eigenvalue of L is real.

Proof . a) If L = L∗, then
〈L(v), v〉 = 〈v, L(v)〉 = 〈L(v), v〉.

b) If L(v) = λv, then
λ〈v, v〉 = 〈λv, v〉 = 〈λv, v〉 = λ〈v, v〉.

Lemma. (3.20) If L : V → V is self-adjoint, then
(a) eigenvectors for distinct eigenvalues of L are orthogonal, and
(b) for any subspace S ⊆ V , if L(S) ⊆ S, then L(S⊥) ⊆ S⊥.

Proof . (a) Suppose v1 and v2 are eigenvectors with distinct eigenvalues λ1 6= λ2. By 3.17, part 1,
λ1, λ2 ∈ R. Then

(λ1 − λ2)〈v1, v2〉 = 〈λ1v1, v2〉 − 〈v1, λ1v2〉 = 〈L(v1), v2〉 − 〈v1, L(v2)〉 = 0.

Thus 〈v1, v2〉 = 0. For part (b), if L(S) ⊆ S, then for any s ∈ S and s⊥ ∈ S⊥,

0 = 〈L(s), s⊥〉 = 〈s, L(s⊥)〉. /////

Theorem. (F = C case of the Spectral Theorem, 3.21) Suppose V is a complex inner-product
space and L : V → V is self-adjoint. Then V has an orthonormal basis consisting of eigenvectors
of L.

Proof . Let Vλ be the eigenspace for L with eigenvalue λ. Then the characteristic polynomial of L
has at least one root, λ1, and so we have a nontrivial orthogonal decomposition V = Vλ1

⊕ V ⊥

λ1
.

Moreover, L(Vλ1
) ⊆ Vλ1

, and L(V ⊥

λ1
) ⊆ V ⊥

λ1
. Take any orthogonal basis for Vλ1

. By part (a) of the

exercise above, V ⊥

λ1
is an inner product space and the restriction of L to V ⊥

λ1
is self-adjoint. So by

induction (on dimension), we have a basis for V ⊥

λ1
satisfying the requirements of the theorem, and

combined with the basis for Vλ1
, we are done. /////

Theorem 3.21, with F = R can be approached two ways (at least). In Knapp, we deduce it from
the complex case. Another approach is to show that a self-adjoint operator on a real space has an
eigenvector, then imitate the above.
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