M7210 Lecture 14

Adjoints and the Spectral Theorem

I will be describing the highlights of section III.2 of Knapp. As previously, we assume

V is a finite-dimensional inner-product space over $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

If $L: V \to V$ is a linear map, we may form the function

 $(u,v) \mapsto \langle L(u), v \rangle : V \times V \to \mathbb{F}.$

This gives us a map from Lin(V, V), the vector-space of all linear maps from V to V, to $\text{Sesq}(V \times V, \mathbb{F})$, the vector space of all sesquilinear maps from $V \times V$ to \mathbb{F} :

$$L \mapsto \langle L(\cdot), \cdot \rangle : \operatorname{Lin}(V, V) \to \operatorname{Sesq}(V \times V, \mathbb{F}).$$

This map is injective, because if L is not the zero map, then $L(u) \neq 0$ for some $u \in V$, and hence $\langle L(\cdot), \cdot \rangle$ is non-zero, as we can see by evaluating it at (u, L(u)).

Proposition. Let $L: V \to V$ be a linear map. For each $u \in V$, there is a unique $L^*(u) \in V$ such that

$$\langle L(v), u \rangle = \langle v, L^*(u) \rangle$$
 for all $v \in V$.

Moreover, for any $u, u_1, u_2 \in V$, $L^*(cu) = cL^*(u)$ and $L^*(u_1 + u_2) = L^*(u_1) + L^*(u_2)$.

Proof. Existence and uniqueness follows from the last theorem in Lecture 13. For any fixed u, we have for all $v \in V$: $\langle v, L^*(cu) \rangle = \langle L(v), cu \rangle = \overline{c} \langle L(v), u \rangle = \langle v, cL^*(u) \rangle$. Thus, $L^*(cu) = cL^*(u)$ (by the uniqueness part of the last theorem in the last lecture. Additivity follows similarly. /////

Definition. If $L = L^*$, then L is said to be *self-adjoint*.

Comment. This definition has the advantage that it is independent of any basis, but it has the disadvantage that it makes the adjoint seem mysteriously abstract. In fact, if A is the matrix of L relative to selected orthonormal bases on the domain and codomain (each a copy of V), then the the matrix of L^* relative to these bases is the congugate transpose of A. So, you can easily obtain notation for L^* if you need to do concrete computations. See page 99-100 of Knapp for details.

Example. (Cf. Proposition 3.16, page 100.) Suppose U is a subspace of V. Let

$$U^{\perp} = \{ v \in V \mid v \perp u \text{ for all } u \in U \}$$

be the orthogonal complement of U. Then, each element of $v \in V$ can be written uniquely as a sum $\pi_U(v) + \pi_{U^{\perp}}(v)$, with $\pi_U(v) \in U$ and $\pi_{U^{\perp}}(v) \in U^{\perp}$. I assert that π_U is self-adjoint. Indeed, for any $v, w \in V$:

$$\langle v, \pi_U^*(w) \rangle = \langle \pi_U(v), w \rangle = \langle \pi_U(v), \pi_U(w) \rangle = \langle v, \pi_U(w) \rangle.$$

Caution. There are product decompositions of V that are not "orthogonal". Indeed, if U and W are any non-trivial subspaces of V with $U \cap W = \{0\}$ and $\dim U + \dim W = \dim V$, then $V = U \oplus W$ as a vector-space sum/product. As a matter of fact, given specific U and W with these properties, there are many different mappings that could serve as projections $\pi_U : V \to U$

and $\pi_W : V \to W$. Even when $U \perp W$ with respect to some inner product, there are projections that are not the orthogonal ones. It is very important to distinguish clearly between constructions that respect only the vector-space structure and constructions that respect the inner product. In the example above, the projection must respect the inner product.

Exercise. Call V, with inner product $\langle \cdot, \cdot \rangle$ the orthogonal direct sum of V_1 and V_2 if:

- $V = V_1 \oplus V_2$ as vector spaces,
- V_1 , and V_2 each has its own inner product, $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ respectively, and
- $\langle (v_1, v_2), (w_1, w_2) \rangle = \langle v_1, w_1 \rangle_1 + \langle v_2, w_2 \rangle_2.$

(a) Suppose $V = S \oplus S^{\perp}$ is an orthogonal direct sum. Also, suppose $L: V \to V$ is self-adjoint, and $L(S) \subseteq S$. Show that the restriction of L to S is self-adjoint.

(b) Suppose V is the orthogonal direct sum of V_1 and V_2 . Find surjective linear functions β_i : $V \to V_i$ so that V is the vector-space product with projections β_1 , β_2 , but

$$\langle v, w \rangle \neq \langle \beta_1(v), \beta_1(w) \rangle_1 + \langle \beta_2(v), \beta_2(w) \rangle_2.$$

Proposition. (3.17, part 1) Suppose $L: V \to V$ is self-adjoint. Then

- (a) $\langle L(v), v \rangle \in \mathbb{R}$ for every $v \in V$.
- (b) Every eigenvalue of L is real.

Proof. a) If $L = L^*$, then

$$\langle L(v), v \rangle = \langle v, L(v) \rangle = \overline{\langle L(v), v \rangle}$$

b) If $L(v) = \lambda v$, then

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \overline{\langle \lambda v, v \rangle} = \overline{\lambda} \langle v, v \rangle.$$

Lemma. (3.20) If $L: V \to V$ is self-adjoint, then

(a) eigenvectors for distinct eigenvalues of L are orthogonal, and

(b) for any subspace $S \subseteq V$, if $L(S) \subseteq S$, then $L(S^{\perp}) \subseteq S^{\perp}$.

Proof. (a) Suppose v_1 and v_2 are eigenvectors with distinct eigenvalues $\lambda_1 \neq \lambda_2$. By 3.17, part 1, $\lambda_1, \lambda_2 \in \mathbb{R}$. Then

$$(\lambda_1 - \lambda_2)\langle v_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle - \langle v_1, \lambda_1 v_2 \rangle = \langle L(v_1), v_2 \rangle - \langle v_1, L(v_2) \rangle = 0.$$

Thus $\langle v_1, v_2 \rangle = 0$. For part (b), if $L(S) \subseteq S$, then for any $s \in S$ and $s^{\perp} \in S^{\perp}$,

$$0 = \langle L(s), s^{\perp} \rangle = \langle s, L(s^{\perp}) \rangle.$$
 /////

Theorem. ($\mathbb{F} = \mathbb{C}$ case of the Spectral Theorem, 3.21) Suppose V is a complex inner-product space and $L: V \to V$ is self-adjoint. Then V has an orthonormal basis consisting of eigenvectors of L.

Proof. Let V_{λ} be the eigenspace for L with eigenvalue λ . Then the characteristic polynomial of L has at least one root, λ_1 , and so we have a nontrivial orthogonal decomposition $V = V_{\lambda_1} \oplus V_{\lambda_1}^{\perp}$. Moreover, $L(V_{\lambda_1}) \subseteq V_{\lambda_1}$, and $L(V_{\lambda_1}^{\perp}) \subseteq V_{\lambda_1}^{\perp}$. Take any orthogonal basis for V_{λ_1} . By part (a) of the exercise above, $V_{\lambda_1}^{\perp}$ is an inner product space and the restriction of L to $V_{\lambda_1}^{\perp}$ is self-adjoint. So by induction (on dimension), we have a basis for V_{λ_1} satisfying the requirements of the theorem, and combined with the basis for V_{λ_1} , we are done.

Theorem 3.21, with $\mathbb{F} = \mathbb{R}$ can be approached two ways (at least). In Knapp, we deduce it from the complex case. Another approach is to show that a self-adjoint operator on a real space has an eigenvector, then imitate the above.