
M7210 Lecture 15 Wednesday September 26, 2012

Groups

Definition. A group G is a set equipped with the following data:

a) a designated element e (called the identity element),

b) a function g 7→ g−1 : G → G (called inversion),

c) a function (g, h) 7→ gh : G × G → G (called the operation),

with the requirement that the following axioms are satisfied:

1) The identity law: for all g ∈ G, eg = g = ge.

2) The law of inverses: for all g ∈ G, gg−1 = e = g−1g.

3) The associative law: for all f, g, h ∈ G, (fg)h = f(gh).

When speaking of a group G, if we want to refer to the underlying set only, without regard
to the additional structural data (given by the identity, inversion and the operation), some
people write |G|, some people write F (G) (where “F” stands for “forget”), and some people
withe G and just state their intent. The choice is optional. In practice, there is seldom
confusion, but this is a difference that sometimes makes a big difference. So one must be
alert to it.

Fact. If fg = e or gf = e, then f = g−1.

Proof .
fg = e ⇒ fgg−1 = eg−1 ⇒ fe = g−1 ⇒ f = g−1.

Examples

1. The integers Z with identity 0, inversion x 7→ −x and operation (x, y) 7→ x + y is a
group.

2. If F is a field, then the non-zero elements of F with identity 1F , inversion x 7→ 1/x
and operation (x, y) 7→ x y is a group.

3. The integers mod n consists of the set {0, 1, . . . , n−1}. The identity is 0. The inversion
map is k 7→ n − k if k > 0 and 0 7→ 0, and the operation is:

(k, ℓ) 7→

{

k + ℓ, if k + ℓ < n;
k + ℓ − n, if k + ℓ ≥ n.

Later, we will identify this group with the “group of equivalence classes of Z mod n.”
The equivalence relation is

x ≡ y ⇔ n|(y − x).

A common notation for this group is Z/nZ or Z/(n). The elements may be denoted
k + nZ or k + (n) or [k]n or k, for k ∈ Z.

4. If X is any set, the collection of bijections f : X → X is a group. The identity is
the function e = idX defined by idX(x) = x for all x ∈ X . Inversion is “functional
inversion.” In other words, f−1 : X → X is the function defined by

for all w, z ∈ X , f−1(z) = w if and only if f(w) = z.
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The operation is function composition:

for all x ∈ X , fg(x) = f(g(x)).

If X is a finite set with n elements, we call this group the group of permutations of
n elements, or the symmetric group on n elements. It is denoted Sn (Knapp uses a
gothic “S”).

5. Let T be the set of complex numbers of modulus 1, i.e., the unit circle in the com-
plex plane. Then T is a group under multiplication. Note that ω−1 = ω (complex
conjugate).

Definition. Let G be a group. A subgroup of G is a subset of |G| that contains the identitiy,
that contains g−1 whenever it contains g and that contains fg whenever it contains f and
g.

Facts that you should be able to prove in your sleep:

1. Any subgroup of a group is a group.

2. If H and K are subgroups of a group G, then H ∩ K is a subgroup of G. If {Hα |
α ∈ A } is any set of subgroups of G, then

⋂

{Hα | α ∈ A } is a subgroup of G.

4. A union of subgroups need not be a subgroup. (Provide examples).

5. Given any subset X ⊆ |G|, there is a subgroup containing X that is smallest in the
sense that it is contained in every subgroup of G that contains X . (Hint. Consider
the intersection of all subgroups of G—including G itself, of course—that contain X .)
(The smallest subgroup of G containing X is called the subgroup of G generated by

X.)

Example. The dihedral groups. It a ∈ T , let ρa : T → T be defined by ρa(z) = az, and let
σa : T → T be defined by σa(z) = az. Let D∞ be the following set of bijections from T to
T :

{ ρaz | a ∈ T} ∪ { σa | a ∈ T}.

Thus D∞ consists of the rotations and the functions that can be obtained by a flip over
the real axis followed by a rotation. We note that

a(bz) = (ab)z, a(bz) = (ab)z, a(bz) = (ab)z a(bz) = (ab)z,

so
ρaρb = ρab, ρaσb = σab, σaρb = σ

ab
σaσb = ρ

ab
.

This shows that D∞ is closed under composition. It clearly contains the identity ρ1. As
for, inverses: ρbρb

= ρ1, so

ρ−1

b = ρ
b
.

Thus, D∞ is a subgroup of the group of all bijections of T with itself. Also, note that
σa = ρaσ1. Thus if we write σ in place of σ1, we see D∞ = { ρaσj | a ∈ T, j ∈ {0, 1} }.
Finally, note that

σρb = σ
b

= ρ−1

b σ.
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This provides neat set of rules for simplifying any expressions involving the elements of
D∞. For example, fix some a ∈ T and let ρ := ρa. Then:

ρiσρjσρkσ = ρiρ−jσσρkσ = ρiρ−jρkσ = ρi−j+kσ.

Finite dihedral groups. We call ω a primitive nth root of unity if ω ∈ T , ωn = 1 and
ωk 6= 1 for k = 1, 2, . . . , n − 1. For example, i is a primitive 4th root of unity, and in
general cos(2π/n) + i sin(2π/n) is a primitive nth root of unity. Notice that if ω is a
primitive nth root of unity, then 〈ω〉 = {1, ω, ω2, . . . , ωn−1}, with multiplication as a group
operation, is essentially the same group as the group of integers mod n. Suppose ω is a
primitive nth root of unity. Let ρ = ρω. Then the dihedral group with 2n elements is the
following subgroup of D∞:

D2n :=
{

ρiσj | i ∈ {0, 1, . . . , n − 1}, j ∈ {0, 1}
}

.

In D2n, we multiply symbolically using the rules ρiρj = ρi+j and σρk = ρ−kσ, as indicated
above.

Definition. Let G and H be groups. A bijection I : G → H such that I(fg) = I(f)I(g)
for all f, g ∈ G is called an isomorphism.

Example. Let ω be a primitive nth root of unity. The map [k]n 7→ ωn : Z/(n) → 〈ω〉
is a group isomorphism. This makes precise the observation made above when 〈ω〉 was
introduced.

Fact. If I is an isomorphism, I(g−1) = (I(g))−1, and I(eG) = eH . The functional inverse
of an isomorphism is an isomorphism.

Theorem. (Cayley). Suppose G is a group. Then G is isomorphic to a subgroup of the
group of bijections of (the set) G.

Proof . Let Bij(G, G) denote the group of bijections from G (viewed as a set) to G (viewed
as a set). We are going to define a function from G to Bij(G, G). For each g ∈ G, define
βg : |G| → |G| by βg(h) = gh. Each βg is a bijection (WHY?), so βg ∈ Bij(G, G), as
desired. Now, the function g 7→ βg : G → Bij(G, G) is injective, because if g 6= h, then
βg(e) = g 6= h = βh(e), so βg 6= βh. Let Imβ := {α ∈ Bij(G, G) | α = βg for some g ∈ G }.
Observe that βgh = βg ◦ βh, and consequently, Imβ is closed under the group operation,
contains e and contains inverses (this requires some light work to check explicitly), and thus
is a group. Moreover g 7→ βg : G → Imβ is bijective and preserves the group operation, so
it is an isomorphism. /////

Homework.

• Page 198: 1–8.
• Let p ∈ N be an odd prime. As you probably are aware, in Z/pZ one may multiply

as well as add—indeed, Z/pZ is a field. Find a group of 3× 3 matrices with entries in
Z/pZ such that every element has order p, but the group is not abelian. (Hint: Put
1s on the diagonal.)
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